Application for Air Quality Permit to Construct at FMC Wyoming Corporation’s Westvaco Facility

April 10, 2015
Andrew Keyfauver
NSR Permit Engineer
Department of Environmental Quality, Air Quality Division
122 West 25th Street
Herschler Building, 2-E
Cheyenne, WY 82002

RE: TRONOX Westvaco Project Application No. A0000713

Dear Mr. Keyfauver:

As discussed in our meeting of April 29, 2015 TRONOX is submitting Addendum 1 to Application No. A0000713 in order to provide additional detail to the Granger-Westvaco Pipeline Project. The application described the project in general terms (Section 2.2.2) and included the estimated emissions that may occur as a result of the project at Westvaco (Appendix A-4, Project No. 5).

The addendum includes a narrative describing the purpose and mechanics of the project as well as a revised process flow diagram (Fig. 2-3 rev1) and a drawing indicating the pipeline corridor between the Granger and Westvaco facilities (Fig. 1). Fig. 2-3 was part of the Westvaco application; Fig. 2-3 rev1 provides more specific detail with respect to the flow of purge liquor through the ELDM deca process.

Addendum 1 is also being submitted in IMPACT as a supplement to A0000713. The submitter is Fred von Ahrens, TRONOX Responsible Official.

Please contact me with any questions or for additional information.

Sincerely,

John Lucas
Environmental Manager
Addendum 1

GRANGER TO WESTVACO PIPELINE SUMMARY

The TRONOX Granger plant produces soda ash (sodium carbonate) by evaporating water from a solution of sodium carbonate and water (“mine water”). The mine water contains various impurities, primarily sodium chloride, sodium sulfate, and sodium bicarbonate, which are also concentrated in the evaporation process. In order to meet product specifications the level of impurities is controlled via a purge stream from the existing evaporation equipment. Unfortunately, the purge stream contains a significant concentration of sodium carbonate as well as the impurities.

Sodium carbonate can be partially separated from impurities contained in the purge stream by crystallizing sodium carbonate decahydrate (“deca”). The deca can then be returned to the main process for recovery, thus improving plant efficiency and reducing purge volume otherwise disposed to the tailings pond.

Currently, some of the purge liquor from the Granger process goes to a small deca recovery unit located at the Granger plant. This recovery equipment is inadequately sized for current and future mine water operations and it is operationally unreliable. The permitted Granger Optimization Project (GOP) will result in a further increase in the amount of evaporator purge; consequently, the GOP included a much larger deca recovery system compared to the current system.

In order to recover product from the purge stream before installation of the full deca recovery system associated with the GOP, TRONOX proposes to install a pipeline from the Granger facility to the Westvaco facility’s ELDM plant to take advantage of excess capacity in its deca system. The pipeline will be sized to handle less than fifty percent (<50%) of the design feed capacity of the proposed GOP deca system. TRONOX will use a second new pipeline to return concentrated sodium carbonate stream with a lower impurity level from the ELDM plant to the Granger plant. This project improves sodium carbonate recovery, thereby capturing valuable feedstock while reducing the volume of Granger purge to Tailings Pond No. 3.

Increasing recovery from the Granger purge stream will allow TRONOX to achieve a small increase in production from the Granger facility during construction of GOP, but well below the production rates expected by the full GOP. Similarly, any emission increases at the Granger facility occurring as a result of the production rate increase have been addressed in the GOP permitting action, which considered overall GOP project emissions to represent potential-to-emit (PTE). Use of the pipeline for the described purpose would extend no longer than five (5) years from the date upon which the pipeline commences operation.

The process is summarized in the attached block flow diagram. A drawing indicating the pipeline corridor between the Granger and Westvaco facilities is also attached.
Figure 1 Federal ROW Sought and Adjacent State-Owned and Privately Owned Land.
Application for
Air Quality Permit to Construct
at FMC Wyoming Corporation’s
Westvaco Facility

Prepared For:
Wyoming Department of Environmental Quality
Air Quality Division
122 West 25th Street
Cheyenne, Wyoming 82002

Prepared By:
FMC Wyoming Corporation
 John Lucas

Schnauber Consulting LLC
 Mike Wendorf
 Otto Schnauber

McVehil-Monnett Associates, Inc.
 Kendall Necker
 Bill Monnett
Table of Contents

Section

1.0 **Introduction**

2.0 **Source and Project Descriptions**
 2.1 Site Location
 2.2 ELDM Plant
 2.3 Monohydrate Plant
 2.4 Sesquicarbonate Plant
 2.5 Caustic Plant
 2.6 Utilities Plant
 2.7 Construction and Operation Schedules

3.0 **Project Emissions**
 3.1 Emissions Calculation Methodology
 3.2 Affected Emissions Units
 3.3 Baseline Actual Emissions
 3.4 Projected Actual Emissions
 3.5 Project Emission Increase

4.0 **Regulatory Analysis**
 4.1 Permit Requirements for Construction or Modification
 4.2 Operating Permit Requirement
 4.3 New Source Performance Standards
 4.4 Compliance Assurance Monitoring
 4.5 National Emission Standards for Hazardous Air Pollutants
 4.6 Wyoming Game & Fish Department Sage Grouse Management
 4.7 Good Engineering Practice Stack Height
 4.8 Other State and Federal Regulations
 4.9 Proposed Permit Conditions

5.0 **Best Available Control Technology Analysis**
 5.1 Source Description
 5.2 Identification of Potential Control Technologies
 5.3 Selection of BACT for PM/PM$_{10}$/PM$_{2.5}$ Control

6.0 **Ambient Air Quality Analysis**
Table of Contents - Continued

Tables

1-1 Regulation, Citations, and Section Number
3-1 Baseline Actual Emissions
3-2 Projected Actual Emissions
3-3 Project Emissions Increase
4-1 Summary of Proposed Permit Limits

Figures

2-1 Facility Location Map
2-2 Facility Site Map
2-3 ELDM Process Flow Diagram
2-4 Monohydrate Process Flow Diagram
2-5 Sesquicarbonate Process Flow Diagram
2-6 Caustic Process Flow Diagram
2-7 Steam Production and Distribution Diagram
4-1 Sage Grouse Core Area and Lek Map

Appendices

A Project and Net Emissions Increase Calculations
A-1 Project Emission Summary
A-2 Project Baseline Actual Emissions (BAE)
A-3 Caustic Project Emissions
A-4 ELDM Project Emissions
A-5 Mono Project Emissions
A-6 Sesqui Project Emissions
A-7 Utilities Project Emissions
A-8 ELDM Demand Growth Emissions
A-9 Mono Demand Growth Emissions
A-10 Sesqui Demand Growth Emissions
A-11 Monthly Production Data - 2014

B Best Available Control Technology Supporting Information
B-1 RACT/BACT/LAER Clearinghouse Review
B-2 NS-10, NS-11 Emission Limit Calculations
1.0 Introduction

This minor source air quality permit application is submitted by FMC Wyoming Corporation for a permit to modify operations at the company’s Westvaco trona operation located approximately 20 miles west of Green River, Wyoming. The Westvaco site includes facilities for production of sodium carbonate (soda ash), sodium sesquicarbonate, sodium bicarbonate, and sodium hydroxide (caustic) from trona ore mined at the site. An additional production plant recovers alkali from the combination of naturally occurring water that enters the underground mine, and the supernatant from trona tailings streams that are pumped back into mine voids.

For its Westvaco Optimization Project (the “Project”) TRONOX proposes incremental production increases at three of its plants for a combined increase of 109,000 tons per year of refined soda ash (RSA) from the facility. Other elements of the Project include a small increase in caustic production (less than 3 tons/year), and re-commissioning of two small flyash handling baghouses. The details relevant to each plant are described in Section 3 of this application.

The Westvaco site is a major source for particulate matter (PM$_{10}$, PM$_{2.5}$), sulfur dioxide (SO$_2$), nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compounds (VOC), and greenhouse gases (GHG). The activities described in this permit application will result in minor increases in these pollutants. The project net emission increase for each pollutant is less than its respective Prevention of Significant Deterioration (PSD) significant emission rate. With the exception of the re-commissioning of two small flyash handling baghouses, the emissions increases resulting from the Project are a function of increased utilization of existing downstream process equipment and the gas-fired boilers.

There are two coal-fired boilers and five gas-fired boilers at the Westvaco site and all of the boilers supply steam to a common header for distribution throughout the facility. Since TRONOX has determined that there is little, if any, increased steam production increment available from the coal-fired boilers for the Project, the steam needed to facilitate the production rate increases from each plant will be provided from increased utilization of the gas-fired boilers.
This permit application is being submitted to the Wyoming Department of Environmental Quality, Air Quality Division, to meet the requirements described in Chapter 6 of the Wyoming Air Quality Standards and Regulations. The permit application includes relevant process descriptions, emission inventories, and the proposed control method for particulate for the two re-commissioned sources. This document also provides a demonstration that project emissions contribute to ambient air impacts that are less than Wyoming's Significant Impact Levels, or are in compliance with Wyoming Ambient Air Quality Standards where a Significant Impact Level is exceeded. A listing of regulations, citations, and section numbers where the compliance demonstrations appear in this application are shown in the following table.

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Wyoming Air Quality Standards and Regulations Citation</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air quality permit application form</td>
<td>Chapter 6, Section 2(b)(i)</td>
<td>2</td>
</tr>
<tr>
<td>Site information, plans, and description</td>
<td>Chapter 6, Section 2(b)(i)</td>
<td>3</td>
</tr>
<tr>
<td>Construction schedule</td>
<td>Chapter 6, Section 2(b)(i)</td>
<td>3</td>
</tr>
<tr>
<td>Pollution control equipment</td>
<td>Chapter 6, Section 2(b)(i)</td>
<td>4</td>
</tr>
<tr>
<td>Nature and amount of emissions</td>
<td>Chapter 6, Section 2(b)(i)</td>
<td>4</td>
</tr>
<tr>
<td>Ambient air standards compliance</td>
<td>Chapter 6, Section 2(c)(ii)</td>
<td>7</td>
</tr>
<tr>
<td>Land Use Planning</td>
<td>Chapter 6, Section 2(c)(iv)</td>
<td>5</td>
</tr>
<tr>
<td>GEP stack height</td>
<td>Chapter 6, Section 2(d)</td>
<td>5</td>
</tr>
<tr>
<td>Monitoring and Recordkeeping</td>
<td>Chapter 6, Section 4(b)(i)(H)</td>
<td>5</td>
</tr>
<tr>
<td>Hybrid Test</td>
<td>Chapter 6, Section 4(b)(i)(J)(V)</td>
<td>4</td>
</tr>
<tr>
<td>BACT</td>
<td>Chapter 6, Section 4(b)(ii)</td>
<td>6</td>
</tr>
<tr>
<td>Ambient Air Quality Standards</td>
<td>Chapter 2</td>
<td>7</td>
</tr>
</tbody>
</table>
2.0 Source and Project Descriptions

Site information, plans, description, and schedules are provided in this section.

2.1 Site Location

The TRONOX Westvaco facility is located approximately 20 miles west-northwest of Green River, Wyoming, in Sections 14, 15, 22, and 23, T19N/R110W. Universal Transverse Mercator (UTM) zone 12 NAD83 coordinates of the Westvaco plant are approximately 599054 meters East, 4608113 meters North. Figure 2-1 shows the regional setting of the Westvaco plant. Figure 2-2 shows the location of the various production plants within the facility.

2.2 ELDM Plant

Background
ELDM is an acronym for the major unit operations in this mine water processing plant. These operations include (E) Evaporation, (L) Lime, (D) Decahydrate crystallization, and (M) Monohydrate crystallization. The Wyoming Department of Environmental Quality, Air Quality Division, issued permit CT-1045 on September 7, 1993, for construction of the ELDM plant.

2.2.1 Process Description

Figure 2-3 is a flow diagram of the ELDM process.

Evaporation/Stripping
An alkali solution originating in the underground trona mine provides the feedstock for the ELDM plant. This solution is pumped from underground sumps to a clarifier on the surface where fine insoluble particles are removed. The clarified mine water is subsequently sent to mine water strippers/evaporators where sodium bicarbonate in the solution is converted to sodium carbonate (through steam stripping), and where the solution is concentrated to approximately 30% total alkalinity. The vent stream from the mine water
strippers/evaporators consists of carbon dioxide, water vapor, and minor amounts of hydrogen sulfide. The hydrogen sulfide emission is controlled with an alkaline spray tower scrubber.

Lime
Residual sodium bicarbonate that is in the concentrated mine water can be damaging to metal and can cause problems with subsequent crystallization steps. Consequently, the small amount of bicarbonate remaining in the solution is subsequently minimized by adding caustic produced by mixing mine water and lime. The solution is then filtered to remove any remaining fine particles.

Decahydrate Crystallization
In the next step in the process the solution is cooled in two crystallizers where sodium carbonate decahydrate crystals are formed. The decahydrate crystallization process rejects soluble impurities (e.g., chlorides, sulfates, organics) and provides the principal means of purifying mine water for the production of high purity anhydrous sodium carbonate. The precipitated crystals are subsequently melted and the resulting sodium carbonate solution provides the feed for the monohydrate crystallizers.

Monohydrate Crystallization
Water in the saturated (30%) sodium carbonate liquor is evaporated in the monohydrate crystallizers until a sodium carbonate monohydrate crystal precipitates. These crystals are then separated from the liquor and are sent to a fluidized bed dryer.

Drying
The fluidized bed dryer converts the sodium monohydrate crystals to anhydrous sodium carbonate that is subsequently conveyed to the loadout area for shipment in railcars. A cyclone and high-pressure drop venturi scrubber control particulate emissions from the fluid bed dryer.
2.2.2 Proposed ELDM Plant Process Modifications

ELDM project activities include installation of heat-exchanger equipment for pre-heating of mine water feeding the stripper/evaporators, replacement and upgrade of mine water stripper column packing, piping installation to facilitate condensate diversion around the flash tanks, and replacement of the fluid bed dryer feed screws with higher capacity units. These modifications will facilitate an incremental production increase of approximately 29 ktons per year of refined soda ash from the ELDM plant. Annual emissions from all ELDM point sources will increase slightly as a result of increased utilization of equipment.

TRONOX also proposes to utilize excess capacity of the decahydrate section of the ELDM plant to purify and concentrate the monohydrate purge stream from its Granger facility. The purge stream would be sent to the Westvaco ELDM plant, treated, and in return a concentrated, purified alkali stream will be fed to Granger’s Mono crystallizers. No production increase will occur at the ELDM plant, but a small increase in steam utilization at the Westvaco facility is required for processing the purge stream. The transfer operations would occur via pipelines that would be placed in an existing pipeline corridor permitted by the Wyoming DEQ Land Quality Division (reference Section 4.6 for Sage Grouse Core Area Management). TRONOX understands that additional permitting will be required for its Granger facility in order to accommodate any increased production.

2.3 Monohydrate Plant

Background
The monohydrate plant (Mono) consists of two parallel processing lines for the production of soda ash. Mono1 began operation in May of 1972 and Mono2 began operation in January of 1976.
2.3.1 Mono Process Description

Figure 2-4 is a flow diagram of the Mono process.

Feedstocks
Dry-mined trona ore is the primary feedstock for Mono plant. Trona ore is a double salt of sodium carbonate and sodium bicarbonate (Na$_2$CO$_3$·NaHCO$_3$·2H$_2$O) and the ore from the Westvaco mine is approximately 90% trona and 10% insoluble materials. Ore is delivered to the Mono plant from the mine via the #4 ore hoist shaft. The ore is fed directly into the process, or it is stockpiled for future use in case of a supply interruption from the mine. Other feedstocks for the Mono plant include liquor from the decahydrate crystal recovery process, clarified mine water, and concentrated mine water. These other feedstocks may supplement or replace feed liquor that is produced from trona ore.

Ore Crushing
Trona ore coming from the mine is screened with the undersized material conveyed into the plant for processing. Oversize material may be crushed prior to processing, or conveyed to the stockpile for storage and subsequent use when mine operations are not producing ore.

Calcining
Crushed trona ore is fed to the gas-fired rotary calciners where it is heated to drive off carbon dioxide and water. All of the transformations necessary to convert raw trona ore into crude soda ash are completed in the calcining step. The calcined ore is discharged into a conveying system that moves the material to the dissolving section.

Dissolving/Clarification/Filtration
The remaining portion of the process serves to remove impurities from the ore and to produce the final product. The crude soda ash produced by the calcining step is soluble in water whereas most of the impurities in the trona ore feed stock
are not. Dissolving the ore in water causes the impure soda ash to go into solution while the insoluble impurities stay suspended in the resulting mixture. These impurities are separated from the solution through classifying, clarifying and filtering the liquor.

Evaporation and Centrifugation

Water in the filtered liquor is evaporated in the monohydrate evaporators until sodium carbonate monohydrate crystals are formed. The crystals are separated from the mother liquor by centrifuges and are subsequently sent to the fluidized bed dryers.

Drying

The fluidized bed dryers use steam heat to convert the sodium monohydrate crystals to anhydrous sodium carbonate that is subsequently conveyed to the loadout area for shipment in railcars. Cyclones and high-pressure drop venturi scrubbers control particulate emissions from the fluid bed dryers.

2.3.2 Proposed Mono Plant Process Modifications

Mono plant project activities include replacement of filter piping, provision of de-superheating 25 lb. steam to the process, replacement of Mono2 circulating pumps, HE-3501 heat exchanger replacement, and application of variable frequency drive (VFD) technology to the Mono1 slurry pumps. These modifications will facilitate a production increase of approximately 39.5 ktons of refined soda ash per year from the Mono plant. The production increase will be achieved through use of a combination of liquor from the decahydrate crystal recovery process, clarified mine water, and concentrated mine water. Since none of the proposed activities are modifications to the Mono Plant calciners, only process equipment located downstream of the Mono calciners will see increased utilization as a result of the Mono plant projects. Annual emissions from the affected Mono plant emission sources will increase slightly as a result.
2.4 Sesquicarbonate Plant

Background
The TRONOX Westvaco sodium sesquicarbonate plant (Sesqui) began operation in 1953 and was the first plant to produce refined soda ash from trona ore mined in the Green River basin. This plant produces multiple grades of soda ash and sodium based products using the “Sesqui’ process described below.

2.4.1 Sesqui Process Description

Figure 2-5 is a flow diagram of the Sesqui process.

Ore Handling
Dry-mined trona ore is the primary feedstock for the Sesqui plant. Trona ore is a double salt of sodium carbonate and sodium bicarbonate (\(\text{Na}_2\text{CO}_3\cdot\text{NaHCO}_3\cdot2\text{H}_2\text{O}\)) and the ore from the Westvaco mine is approximately 90% trona and 10% insoluble materials. Ore is delivered to the Sesqui plant from the mine primarily via the #2 ore hoist shaft or alternatively (via overland conveyor) from the #4 ore hoist shaft. The ore is fed directly into the process, or it is stockpiled for future use in case of a supply interruption from the mine.

Ore Crushing and Dissolving
The initial processing step involves crushing the ore to a size that will quickly dissolve. In the dissolving circuit the ore is agitated with hot water and since the reaction is endothermic, steam is added to hold the solution temperature near the boiling point.

Clarification and Filtration
The next two steps in the process are used to purify the alkali solution (“liquor”) created in the dissolving circuit. The liquor is transferred to large settling tanks (clarifiers) were the coarse insoluble fraction of the trona ore is settled out. As the clear liquor overflows the clarifiers, activated carbon is added to remove soluble organics. The mixture of saturated liquor and carbon subsequently enters a series of pressure leaf filters where the carbon and remaining fine
insoluble material is removed. At this point the purified liquor is near the saturation point and it is ready for crystallization.

Crystallization and Centrifugation

In this step the liquor is cooled in a series of crystallizer vessels and a slurry of sodium sesquicarbonate crystals and water (C-Cake) is created. The size of the crystals can be controlled by varying the recirculation rate of the crystallizers, and by the amount and types of additives introduced. In preparation for calcining, the C-Cake material is centrifuged to remove excess water. Different centrifuge designs are used to supply feed to various types of drying units to facilitate production of soda ash with a variety of physical properties.

Calcining and Product Handling

A combination of natural gas-fired and steam-fired units is used in the Sesqui plant. The gas-fired units resemble a rotary kiln with concurrent gas and product flows. The steam-fired units are all fluid bed designs that use high-pressure steam to dry the product. After the crystals have been dried or calcined as required for the various product grades, the soda ash is conveyed to product storage silos or bulk loading silos.

2.4.2 Proposed Sesqui Plant Process Modifications

Sesqui plant project activities include upgrade of ore dissolver feed bin sensors, installation of additional piping from the ore dissolvers to the clarifiers, improvements to the flocculent addition system, modification of the scale inhibitor system including installation of a scale inhibitor system after the dissolvers, enhancement of filter performance, and a capacity increase for a wash-water tank. These modifications will facilitate a production increase of approximately 40.5 ktons of refined soda ash per year from the Sesqui plant. Annual emissions from all Sesqui emission sources will increase slightly as a result of increased utilization of equipment.

The purpose of the scale inhibitor system is to mitigate the formation of various types of sodium, calcium, magnesium scale in process pipes and vessels. The
proposed project will upgrade and relocate various components of the existing system to achieve better scale control and to improve safety. While TRONOX does not believe that the scale inhibitor system modifications are subject to air quality permitting, the emissions associated with a potential production increase from this project are included nevertheless.

2.5 Caustic Plant

Background
Chemical grade caustic soda (sodium hydroxide) is produced in the Westvaco caustic plant. The caustic plant consists of a slaker/causticizer section for production of 10% caustic, mud filters/kiln for recovery of lime, and 50% caustic production section. The 10% caustic plant and kiln were built in 1980 to supply weak caustic for the company’s solution mining project. The 50% caustic plant was constructed in 1990 to supply caustic to the Westvaco sodium cyanide plant (subsequently decommissioned) and external customers.

2.5.1 Caustic Process Description

Figure 2-6 is a flow diagram of the caustic process.

Slaker/Causticizer
The key raw materials for the caustic plant are lime, soda ash, water, and steam. The slaker combines the lime (CaO) and water (H₂O) to form hydrated lime (Ca(OH)₂). The hydrated lime is then reacted with soda ash (Na₂CO₃) and sent through two causticizers to form 10% caustic soda (NaOH) solution and calcium carbonate (CaCO₃). This liquor flows into a clarifier where the mud settles and the 10% caustic soda is sent to a storage tank. This tank is used to supply 10% caustic to the 50% caustic section and to other end-users at the Westvaco facility.

Lime Mud Filters/Kiln
The mud that settles out in the clarifier consists of calcium carbonate and some dilute caustic. This mud is processed through two mud filters to produce a
calcium carbonate mud cake. The calcium carbonate is subsequently sent through a kiln where it is converted back to calcium oxide (lime).

50% Caustic Section
The 50% caustic production section of the caustic plant uses evaporators to concentrate the 10% caustic to 50% caustic solution. This solution is centrifuged and filtered to remove carbonates and the final product is sent to a storage tank in preparation for bulk loading into trucks and railcars.

2.5.2 Proposed Caustic Plant Process Modifications

Caustic plant project activities include installation of a spare pump and line for the lime slaker, and caustic filter optimization. These modifications will facilitate production increases of approximately 2.65 ktons per year of 10% caustic, and approximately 0.1 ktons per year of 50% caustic. Annual emissions from both emission sources at the caustic plant will increase slightly as a result of increased utilization of equipment.

2.6 Utilities Plant

Background
The Westvaco facility has two coal-fired boilers (NS1A and NS1B) and five natural gas-fired boilers (PH1A, PH1B, PH2, PH3, and MW5). All of the boilers supply steam to a common header for distribution throughout the facility. The coal-fired boilers are operated as base load units for the plant and have little, if any, remaining steam production capacity. The natural gas boilers supply plant steam needs beyond the capacity of the coal boilers.
2.6.1 Steam Production and Utilization

No modifications are necessary for any of the boilers. The steam required to support the production increase from each plant will be provided through increased utilization of the gas-fired boilers. Annual emissions from the gas-fired boilers will increase slightly as a result of increased utilization of the equipment.

Figure 2-7 is a flow diagram of steam production and distribution at the Westvaco facility.

2.6.2 Proposed Utilities Project

Flyash from the two coal-fired boilers is currently landfilled at an approved facility located at the Westvaco site. However, in the past some/all of this material was shipped off-site for beneficial use. The flyash was piped directly from the boiler ash handling system to a flyash loadout facility that included two baghouses (NS10 and NS11) for dust control. Since the flyash loadout system has not operated for over ten years, it has fallen into disrepair.

Presently, there is a renewed opportunity to ship some or all of this material off site for beneficial use. TRONOX proposes to re-start the flyash loadout system and to re-condition or replace both of the ash handling baghouses to meet current BACT requirements.

2.7 Construction and Operation Schedules

Implementation of the projects described above will begin in the third quarter of 2015 pending receipt of the necessary permits.

It is assumed for this permit application that the affected emission sources will emit continuously for 52 weeks per year (8760 hours).
GRANGER... GREEN RIVER... ROCK SPRINGS, WY AREA MAP
TRONOX Westvaco
Monohydrate Process Diagram

Source ID
NAD83 UTM Easting, meters
NAD83 UTM Northing, meters
Pollutants

<table>
<thead>
<tr>
<th>Source ID</th>
<th>NAD83 UTM Easting, meters</th>
<th>NAD83 UTM Northing, meters</th>
<th>Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>MonoPile</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 8</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 6</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 11</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 2</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 3</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 4</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>NS-4</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>NS-3</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 5</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 1-CT</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 2-CT</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 6</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 12</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 9</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
<tr>
<td>Mono 10</td>
<td></td>
<td></td>
<td>Particulate, PM10, NOx, CO, VOC, HAPs, CO2</td>
</tr>
</tbody>
</table>

Figure 2-4
TRONOX Westvaco
Caustic Process Diagram

Natural Gas

Lime Kiln
R-5501

Lime Bin
(res-burned)
T-5513

Lime Slaker
T-5506

Causticizer
Tanks (3)

Clarifier
TB-5523

Weak Caustic

Evaporators
(4)

Cooling
Tanks

Centrifuge

Filter

Product Storage

Product Loadout

Lime Bin
T-5512

CaCO3

Clarifier Underflow

Lime Unloading
(makeup)

TA
(Soda ash solution)

Steam

Evaporator

200 lb steam

Particulate,
NOx, CO,
VOC, CO2

Product Storage
(New)

Pollutants
Source ID
NAD83 UTM Easting, meters
NAD83 UTM Northing, meters

<table>
<thead>
<tr>
<th>Source</th>
<th>ID</th>
<th>Easting</th>
<th>Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-1</td>
<td></td>
<td>599619.82</td>
<td>4608140.09</td>
</tr>
<tr>
<td>RD-3</td>
<td></td>
<td>599612.14</td>
<td>4608029.20</td>
</tr>
</tbody>
</table>

Figure 2-6
TRONOX Westvaco
Steam Production and Distribution Diagram

Figure 2-7
3.0 Project Emissions

Emissions from the Westvaco Optimization Project (the “Project”) will be primarily from physical changes to existing process equipment and from increased steam utilization. The Project constitutes a "modification" to an existing major stationary source as defined under the Prevention of Significant Deterioration (PSD) regulations. Emissions associated with the Project were evaluated for PSD applicability in accordance with the procedures in the Wyoming Air Quality Standards and Regulations (WAQSR) Ch. 6, Sec. 4. As documented below and in Appendix A of this permit application, the Project will not result in a significant emissions increase of any NSR regulated pollutant; therefore, it does not constitute a “major modification” subject to PSD review. This permit application is structured to meet the requirements for the issuance of a minor source permit under the WAQSR.

3.1 Emission Calculation Methodology

This application follows the procedures in WAQSR Ch. 6, Sec. 4 (b)(i)(J)(V), ‘Hybrid Test for Projects That Involve Multiple Types of Emissions Units’. Emissions from the new units are calculated using the ‘Actual-to-Potential’ (ATP) test; emissions from the modified units are calculated using the ‘Actual-to-Projected Actual’ (ATPA) test.

Project related emissions were calculated by: (1) subtracting Baseline Actual Emissions (BAE) from Potential to Emit Emissions (PTE) for new emission units, and; (2) subtracting BAE from Projected Actual Emissions (PAE) for all existing units affected by the Project. In accordance with paragraph (i)(C) under the definition of “Projected Actual Emissions” in WAQSR Ch 6, Sec 4 (a), adjustments were made to unit-specific project emissions increase estimates to exclude emissions that the unit(s) could have accommodated during the selected baseline period and that are unrelated to the Project.
3.2 Affected Emission Units

3.2.1 New Emission Units

Two emission units, NS-10 Fly Ash Silo and NS-11 Fly Ash Truck Loading, were originally constructed and commissioned in 1987 under Permit Nos. CT-603/OP-180, but have not been operated or routinely maintained for a number of years. Since the potential for recycling the coal boiler fly ash off-site has resurfaced, the Project will restore operation of the silo and loading facility. Both emission units were originally equipped with baghouses; the Project proposes to refurbish the existing baghouses or to install new baghouses. Either option chosen will meet Best Available Control Technology (BACT) for PM and PM$_{2.5}$, as discussed in Section 5.

3.2.2 Modified Emission Units

Six (6) existing emission units will undergo physical changes as a result of the Project:

- PA-6 Sesqui Dissolver Vent
- PA-7 Sesqui Dissolver Vent
- PA-8 Sesqui Dissolver Vent
- PA-9 Sesqui Dissolver Vent
- MW-3 ELDM Fluid Bed Dryer
- MW-6 ELDM H$_2$S Scrubber/C0$_2$ Stripping System

3.2.3 Rate-Affected Emission Units

Thirty-three (33) existing emission units are anticipated to have increased emissions solely as a result of increased utilization. The increased utilization will impact both process emission units and the gas-fired boilers.

3.3 Baseline Actual Emissions

Baseline actual emissions (BAE) for an existing emissions unit (other than an electric steam generating unit) is defined as “the average rate, in tons per year, at which the emissions unit actually emitted the pollutant during any consecutive 24-month period
selected by the owner or operator within the 10-year period immediately preceding either the date the owner or operator begins actual construction of the Project, or the date a complete permit application is received by the Division for a Chapter 6, Section 4 permit, whichever is earlier…". The ‘look back’ period for establishing BAE for existing emissions units at the Westvaco facility is the 10-year period from January 2005 through December 2014. The calendar years 2013 and 2014 were selected as the consecutive 24-month BAE period for all NSR regulated pollutants.

BAE for the existing emissions units affected by the Project were determined using the information submitted in the 2013 and 2014 annual AQD emissions inventory reports as approved by the Division.

Emissions in excess of the allowable limitations were not included in the annual average BAE estimates. Emissions associated with startup, shutdown, and malfunction events are not expected to be impacted by the Project and were therefore not separately quantified for the purpose of determining either BAE or PAE. A summary of BAE for the affected emissions units is presented in Table 3-1. Detailed calculations and supporting documentation are contained in Appendix A.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>BAE (tons per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>210.8</td>
</tr>
<tr>
<td>PM-10</td>
<td>203.2</td>
</tr>
<tr>
<td>PM-2.5</td>
<td>105.3</td>
</tr>
<tr>
<td>SO₂</td>
<td>0.6</td>
</tr>
<tr>
<td>NOₓ</td>
<td>247.2</td>
</tr>
<tr>
<td>CO</td>
<td>63.8</td>
</tr>
<tr>
<td>VOC</td>
<td>11.2</td>
</tr>
<tr>
<td>H₂S</td>
<td>3.0</td>
</tr>
<tr>
<td>Sulfuric acid mist (H₂SO₄)</td>
<td>0.0</td>
</tr>
<tr>
<td>Fluorides (F)</td>
<td>0.0</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0.0</td>
</tr>
<tr>
<td>CO₂e</td>
<td>314339</td>
</tr>
</tbody>
</table>
3.4 Projected Actual Emissions

Projected actual emissions (PAE) for the new and existing emissions units affected by the Project were estimated consistent with the definition in the WAQSR Ch 6, Sec 4 (a). The Project will not increase the design capacity or potential to emit for any of the facility’s emission units; therefore, the PAE period is the five year period following completion of the Project and resumption of regular operation.¹

In comparison with baseline production rates, projected production increases as a result of the Project, as well as from future demand growth, per plant are as follows:

- Mono: future throughput is projected to be 12% of BAE period throughput.
- Sesqui: future throughput is projected to be 14% of BAE period throughput.
- ELDM: future throughput is projected to be 19% of BAE period throughput.
- Caustic: future throughput is projected to be 4% of BAE period throughput, and;
- Overall boiler steam demand is expected to increase by approximately 10%.

It should be noted that additional steam for the Project will be produced exclusively by the five gas-fired boilers, with MW-5 producing at least 46% of that total per year at the incremental production increase of 109K tons per year.

A summary of PAE for the affected emissions units is presented in Table 3-2. Detailed calculations and supporting documentation are contained in Appendix A.

¹ The maximum capacity or the potential to emit of the regulated NSR pollutants for the Westvaco facility and emissions units will not change as a result of the Project; therefore, consistent with the definition of PAE in WAQSR Ch 6, Sec 4 (a), projected emissions are based on any 12-month period in five years following the Project rather than 10 years.
Table 3-2. Projected Actual Emissions (PAE)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PAE (tons per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>241.6</td>
</tr>
<tr>
<td>PM-10</td>
<td>233.0</td>
</tr>
<tr>
<td>PM-2.5</td>
<td>121.5</td>
</tr>
<tr>
<td>SO₂</td>
<td>0.8</td>
</tr>
<tr>
<td>NOx</td>
<td>300.6</td>
</tr>
<tr>
<td>CO</td>
<td>85.4</td>
</tr>
<tr>
<td>VOC</td>
<td>13.7</td>
</tr>
<tr>
<td>H₂S</td>
<td>3.6</td>
</tr>
<tr>
<td>Sulfuric acid mist (H₂SO₄)</td>
<td>0.0</td>
</tr>
<tr>
<td>Fluorides (F)</td>
<td>0.0</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0.0</td>
</tr>
<tr>
<td>CO₂e</td>
<td>375171</td>
</tr>
</tbody>
</table>

3.5 Project Emission Increase

The project emissions increases were calculated on a unit-by-unit basis by subtracting BAE from PAE for each regulated NSR pollutant and then excluding from any increase the portion of emissions that the unit could have accommodated during the BAE period, including emissions related to demand growth. Emissions that project-affected units could have accommodated in the BAE period and that are unrelated to the Project were calculated based on the maximum production rate achievable in the BAE period. A source may exclude, those emissions that the unit ‘could have accommodated’ during the BAE period and that are also otherwise unrelated to the change from the project emissions.

The average of the highest three (3) production months in 2014 was calculated for each of the three production plants: Mono, Sesqui, and ELDM. TRONOX believes that these averages represent what the project-affected units could have accommodated during the baseline period and that are unrelated to the Project.

Emissions that represent the incremental production capacity between BAE and the above production rates were excluded from projected actual emissions after the Project for the purpose of calculating emissions increases. A summary of the project emissions
increase is presented in Table 3-3. Detailed calculations and supporting documentation are contained in Appendix A.

Table 3-3. Westvaco Optimization Project Emissions Increase

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PAE</th>
<th>BAE</th>
<th>Excludable Emissions</th>
<th>Project Emissions Increase</th>
<th>PSD SER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tons/year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>241.6</td>
<td>210.8</td>
<td>21.1</td>
<td>9.8</td>
<td>25</td>
</tr>
<tr>
<td>PM-10</td>
<td>233.0</td>
<td>203.2</td>
<td>20.3</td>
<td>9.5</td>
<td>15</td>
</tr>
<tr>
<td>PM-2.5</td>
<td>121.5</td>
<td>105.3</td>
<td>10.6</td>
<td>5.7</td>
<td>10</td>
</tr>
<tr>
<td>SO\textsubscript{2}</td>
<td>0.8</td>
<td>0.6</td>
<td>0.06</td>
<td>0.1</td>
<td>40</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>300.6</td>
<td>247.2</td>
<td>16.1</td>
<td>37.3</td>
<td>40</td>
</tr>
<tr>
<td>CO</td>
<td>85.4</td>
<td>63.8</td>
<td>5.7</td>
<td>15.9</td>
<td>100</td>
</tr>
<tr>
<td>VOC</td>
<td>13.7</td>
<td>11.2</td>
<td>1.0</td>
<td>1.5</td>
<td>40</td>
</tr>
<tr>
<td>H\textsubscript{2}S</td>
<td>3.6</td>
<td>3.0</td>
<td>0.5</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>Sulfuric acid mist (H\textsubscript{2}SO\textsubscript{4})</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7</td>
</tr>
<tr>
<td>Fluorides (F)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>CO\textsubscript{2}e</td>
<td>375171</td>
<td>314339</td>
<td>23944</td>
<td>36888</td>
<td>75000</td>
</tr>
</tbody>
</table>

As shown, the emissions increase associated with the Project is below the PSD significant emission rate (SER) threshold for each regulated NSR pollutant; thus, the Project does not constitute a “major modification” with respect to PSD. Detailed calculations of BAE, PAE, excludable emissions, and project emissions increases with supporting documentation are contained in Appendix A.
4.0 Regulatory Analysis

This section provides a regulatory analysis of federal and Wyoming air permitting requirements that are applicable to the proposed Westvaco Optimization Project (the “Project”).

4.1 Permit Requirements for Construction or Modification

WAQSR Chapter 6, Section 2 contains permit requirements for construction, modification, and operation. As documented in Section 3.5 and Appendix A, the Project has estimated emission increases that are less than PSD significant emission rate (SER) thresholds for each affected pollutant; therefore, the Project requires a minor source pre-construction permit.

4.1.1 Minor NSR Best Available Control Technology

WAQSR Chapter 6, Section 2(c)(v) provides that no approval to construct or modify shall be granted unless the applicant shows to the satisfaction of the Division that the proposed project will utilize Best Available Control Technology (BACT). Therefore, FMC Wyoming has concluded that the minor source BACT provisions are applicable for re-construction of the NS-10 Fly Ash Silo and NS-11 Fly Ash Truck Loading sources.

Six (6) existing emission units will be modified; however, under the Wyoming minor NSR permitting program these units are not subject to BACT analysis since neither their emission limits nor their permitted capacities require revision as a result of the modifications.

4.1.2 Ambient Air Impact Analysis

Under WAQSR Chapter 6, Sec. 2(c)(ii), the applicant is required to show that the proposed project will not prevent the attainment or maintenance of any ambient air quality standard. As documented in Section 6 of this application,
the emissions increases associated with the Project will not cause nonattainment of any ambient air quality standard.

4.1.3 Monitoring and Recordkeeping

In accordance with the requirements of WAQSR Ch 6, Sec 4 (b)(i)(H), FMC Wyoming will monitor actual emissions from the emissions units affected by the Westvaco Optimization Project and will calculate and maintain annual emissions records on a calendar year basis for a period of five years following the date the Westvaco facility resumes regular operation following the Project. FMC Wyoming will also report annual emissions to the Division within 60 days of the end of each calendar year for the previous year in accordance with WAQSR Ch 6, Sec 4 (b)(i)(H)(IV).

4.2 Operating Permit Requirement

The FMC Westvaco facility currently operates under Operating Permit No. 3-1-132. The Project will require a significant Title V permit revision in accordance with WAQSR Chapter 6, Section 3 (d)(vi)(C). FMC Wyoming will submit an application to the Division for a significant modification within 12 months of post-project operation commencement.

4.3 New Source Performance Standards (NSPS)

The Federal NSPS provisions in 40 CFR Part 60 are incorporated by reference in WAQSR Chapter 5, Section 2. Although the Project will include the re-construction of NS-10 and NS-11, FMC has concluded that neither of these sources is subject to an NSPS. While Subpart OOO, Standards of Performance for Nonmetallic Mineral Processing Plants, is generally applicable to material handling operations at the facility and addresses crushers, mills, screens, bucket elevators, belt conveyors, storage bins, and enclosed rail and truck loading equipment, the definition of “nonmetallic mineral” does not include coal fly ash or coal ash residue.
4.4 Compliance Assurance Monitoring (CAM)

The Federal CAM requirements in 40 CFR Part 64 are codified at WAQSR Chapter 7, Section 3. Generally, CAM applies to pollutant-specific emissions units (PSEU) at facilities required to obtain a Title V permit that meet specified criteria (e.g., subject to an emission limitation/standard, use of a control device to achieve compliance, and potential pre-control device emissions greater than 100 tons per year).

NS-10 and NS-11 are the only new emission units associated with the Project for which the CAM requirements are potentially applicable; however, a conservative estimate of potential pre-control device PM emissions would not exceed 100 tons per year for either unit: 0.30 tpy x (1-.995 control efficiency) = 60 tpy uncontrolled. Consequently, FMC has concluded that the CAM requirements do not apply to these two sources.

4.5 National Emission Standards for Hazardous Air Pollutants (NESHAP)

The Federal NESHAP provisions in 40 CFR Part 63 are incorporated by reference in WAQSR Chapter 5, Section 3. NESHAP (or MACT) standards for source categories (40 CFR 63) apply to existing, new, and reconstructed units (i.e., affected sources) in designated categories at major sources of Hazardous Air Pollutant (HAP) emissions. The Project itself does not involve the construction or reconstruction of any potentially affected MACT sources; therefore, the Project will not trigger any newly applicable MACT requirements.

4.6 Wyoming Game & Fish Department Sage Grouse Core Area Management

The Wyoming Game & Fish Department (WGFD) has established a ‘Sage Grouse Core Area Management Strategy’ to protect vital sage grouse habitat in the State. Core Area Boundaries were finalized in the Governor’s Executive Order 2011-5. A map depicting the Core Area Boundaries and active leks in the Green River Basin is provided in Figure 4-1. The map shows that the Westvaco facility is not included in a Core Breeding Area designation, and it is more than four miles from the nearest
active lek (Big Island 2). Therefore, FMC concludes that the Project will not impact vital sage grouse habitat.

4.7 Good Engineering Practice Stack Height

Chapter 6, Section 2(d) of the Wyoming Air Quality Standards and Regulations requires that compliance with standards not be affected by “…so much of the stack height of a source as exceeds good engineering practice …”. Neither the NS-10 nor the NS-11 vent stack will exceed GEP stack height.

4.8 Other State and Federal Regulations

Based on FMC’s review, no other State or Federal air quality regulations affect the Westvaco Optimization Project.

4.9 Proposed Permit Conditions

Table 4-1 contains a summary of proposed permit limits with corresponding regulatory basis and monitoring. FMC requests that these conditions be incorporated into the construction permit for the Westvaco Optimization Project.

Table 4-1. Summary of Proposed Permit Limits

<table>
<thead>
<tr>
<th>Emissions Unit</th>
<th>ID</th>
<th>Pollutant</th>
<th>Applicable Requirement(1)</th>
<th>Proposed Limits, lbs/hr (tons/yr)(2)</th>
<th>Proposed Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono Power Flyash Silo</td>
<td>NS-10</td>
<td>PM10</td>
<td>BACT</td>
<td>0.069 (0.30)</td>
<td>Performance test: EPA M5/202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM2.5</td>
<td>BACT</td>
<td>0.031 (0.14)</td>
<td>Performance test: EPA M5/202</td>
</tr>
<tr>
<td>Mono Power Flyash Loadout</td>
<td>NS-11</td>
<td>PM10</td>
<td>BACT</td>
<td>0.069 (0.30)</td>
<td>Performance test: EPA M5/202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM2.5</td>
<td>BACT</td>
<td>0.031 (0.14)</td>
<td>Performance test: EPA M5/202</td>
</tr>
</tbody>
</table>

Notes:
1. See Section 5 for the BACT analysis.
2. See Appendix B-2 for emission limit calculations.
5.0 **Best Available Control Technology Analysis**

In accordance with WAQSR Chapter 6, Sec. 2(c)(v), the application of Best Available Control Technology (BACT) is required for control of PM/PM$_{10}$/PM$_{2.5}$ from NS-10 Fly Ash Silo and NS-11 Fly Ash Truck Loading sources. The following sections describe the application of BACT to these two re-constructed emission units.

5.1 **Source Description**

NS-10 Fly Ash Silo will receive the conveyed fly ash from the two coal-fired boiler ESPs for storage; NS-11 Fly Ash Truck Loading will dispense the ash from the silo into hopper trucks for beneficial off-site use. Each of these activities has the potential to emit particulate matter (PM), with the particle size expected to range from 1 to 10 microns.

The two (2) emission units will be rebuilds of units originally constructed and commissioned in 1987 under Permit Nos. CT-603/OP-180; however, neither of these has been operated or routinely maintained for a number of years. Both emission units were originally equipped with baghouses, and the Project proposes to refurbish the existing baghouses or to install new baghouses.

Particulate emissions can be categorized as either filterable or condensable. Filterable emissions are considered to be the particles trapped in the probe and filter in a front half EPA Reference Method 5 sampling train. Vapors and particles less than 0.3 microns pass through the filter and are condensed in the back half of the sampling train. Given the type of particulate (coal fly ash), and with the material approaching ambient temperature during conveying and loading, only filterable PM is expected to be emitted.

5.2 **Identification of Potential Control Technologies**

Fabric filters/cartridge filters (FF/CF) is the only control technology represented in EPA’s RACT/BACT/LAER Clearinghouse (RBLC) for this type of operation (99.120 –
Ash Storage, Handling, Disposal) for the time period of 2005 to present. Evaluation of the RBLC information indicates PM emission rates from 0.005 gr/dscf to 0.010 gr/dscf for new or modified fly ash handling operations nation-wide. Details of the RBLC can be found in Appendix B.

5.3 Selection of BACT for PM/PM$_{10}$/PM$_{2.5}$ Control

FF/CF are generally considered the most effective control technology for material handling processes and appear to be the exclusive control technology in the RBLC for Process Type 99.120. Consequently, FMC Wyoming proposes to install fabric filter control on NS-10 and NS-11 to achieve 0.005 gr/dscf for PM/PM$_{10}$/PM$_{2.5}$.
6.0 Ambient Air Quality Analysis

Report from McVehil-Monnett and Associates
Near-Field Air Quality Modeling Analysis for the Westvaco Optimization Project
Tronox Westvaco

April 2015
MMA Project Number 2693-15

44 Inverness Drive East, Building C
Englewood, CO 80112
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.0</td>
<td>Air Quality Dispersion Model and Modeling Methods Overview</td>
</tr>
<tr>
<td>3.0</td>
<td>Source Description and Model Inputs</td>
</tr>
<tr>
<td>3.1</td>
<td>Westvaco Optimization Project Description</td>
</tr>
<tr>
<td>3.2</td>
<td>Westvaco Optimization Project Emissions</td>
</tr>
<tr>
<td>3.3</td>
<td>Model Description for the Significant Impact Level Analysis</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Model Control Options</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Source Locations and Pollutants Emitted</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Source Parameters and Model Characterization</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Building Downwash</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Receptor Grid</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Meteorological Data Selection and Processing</td>
</tr>
<tr>
<td>4.0</td>
<td>Significant Impact Level Air Quality Analysis Model Results</td>
</tr>
<tr>
<td>4.1</td>
<td>PM$_{10}$ Impacts from the Optimization Project</td>
</tr>
<tr>
<td>4.2</td>
<td>PM$_{2.5}$ Impacts from the Optimization Project</td>
</tr>
<tr>
<td>4.3</td>
<td>NO$_{2}$ Impacts from the Optimization Project</td>
</tr>
<tr>
<td>4.4</td>
<td>SO$_{2}$ Impacts from the Optimization Project</td>
</tr>
<tr>
<td>4.5</td>
<td>CO Impacts from the Optimization Project</td>
</tr>
<tr>
<td>4.6</td>
<td>Ozone Impacts from the Optimization Project</td>
</tr>
<tr>
<td>5.0</td>
<td>Wyoming Ambient Air Quality Analysis Model Results</td>
</tr>
<tr>
<td>5.1</td>
<td>Model Setup</td>
</tr>
<tr>
<td>5.2</td>
<td>Westvaco Model Inputs</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Modeled NO$_{X}$ Sources</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Building Downwash</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Receptor Grid</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Meteorological Data</td>
</tr>
<tr>
<td>5.3</td>
<td>Background Sources</td>
</tr>
<tr>
<td>5.4</td>
<td>Monitored Background Concentrations</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Hourly Ozone Concentrations from Moxa</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Hourly NO$_{2}$ Concentration from Moxa</td>
</tr>
<tr>
<td>5.5</td>
<td>WAAQS Model Results</td>
</tr>
<tr>
<td>6.0</td>
<td>Conclusions</td>
</tr>
<tr>
<td>7.0</td>
<td>References</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>3-1</td>
<td>Total Net Emissions Increase and Permit Applicability for the Westvaco Optimization Project</td>
</tr>
<tr>
<td>3-2</td>
<td>Projected Emissions Increase by Individual Source for the Westvaco Optimization Project</td>
</tr>
<tr>
<td>3-3</td>
<td>Sources for Westvaco and Pollutants with Projected Increases for the Westvaco Optimization Project</td>
</tr>
<tr>
<td>3-4</td>
<td>Point Source Modeled Input Parameters for the Westvaco Optimization Project</td>
</tr>
<tr>
<td>3-5</td>
<td>Point Source Modeled Short- and Long-Term Net Emissions Increase for the Westvaco Optimization Project</td>
</tr>
<tr>
<td>3-6</td>
<td>Area and Volume Source Modeled Input Parameters for the Westvaco Optimization Project</td>
</tr>
<tr>
<td>3-7</td>
<td>Area and Volume Source Modeled Net Emissions Increase for the Westvaco Optimization Project</td>
</tr>
<tr>
<td>3-8</td>
<td>Receptor Grid Placement from the Westvaco Ambient Air Boundary</td>
</tr>
<tr>
<td>3-9</td>
<td>Meteorological Parameters and Collection Levels for the Westvaco Met Tower</td>
</tr>
<tr>
<td>4-1</td>
<td>Class II Significant Impact Levels for Criteria Pollutants</td>
</tr>
<tr>
<td>4-2</td>
<td>Modeled PM$_{10}$ Impacts from AERMOD for the Westvaco Optimization Project Compared to the Class II Significant Impact Levels</td>
</tr>
<tr>
<td>4-3</td>
<td>Modeled PM$_{2.5}$ Impacts from AERMOD for the Westvaco Optimization Project Compared to the Class II Significant Impact Levels</td>
</tr>
<tr>
<td>4-4</td>
<td>Modeled NO$_2$ Impacts from AERMOD for the Westvaco Optimization Project Compared to the Class II Significant Impact Levels</td>
</tr>
<tr>
<td>4-5</td>
<td>Modeled SO$_2$ Impacts from AERMOD for the Westvaco Optimization Project Compared to the Class II Significant Impact Levels</td>
</tr>
<tr>
<td>4-6</td>
<td>Modeled CO Impacts from AERMOD for the Westvaco Optimization Project Compared to the Class II Significant Impact Levels</td>
</tr>
<tr>
<td>4-7</td>
<td>Ozone Precursor Net Emission Increases for the Westvaco Optimization Project Versus Existing Emissions in Sweetwater County (2011 Data)</td>
</tr>
<tr>
<td>4-8</td>
<td>Maximum Monitored H4H 8-Hour Ozone Concentrations for Years 2012 to 2014</td>
</tr>
<tr>
<td>5-1</td>
<td>Modeled Point Sources for NO$_X$ for Tronox Westvaco</td>
</tr>
<tr>
<td>5-2</td>
<td>Modeled Area Sources for NO$_X$ for Tronox Westvaco</td>
</tr>
<tr>
<td>5-3</td>
<td>Modeled Volume Sources for NO$_X$ for Tronox Westvaco</td>
</tr>
<tr>
<td>5-4</td>
<td>Background NO$_X$ Sources Modeled with Tronox Westvaco</td>
</tr>
<tr>
<td>5-5</td>
<td>Modeled Input Parameters for NO$_X$ Sources for Tronox Granger</td>
</tr>
<tr>
<td>5-6</td>
<td>Mean Seasonal Hour Background Ozone Concentrations for the Moxa Monitoring Station</td>
</tr>
<tr>
<td>5-7</td>
<td>Results of Modeled Concentrations in Comparison to the WAAQS</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1A</td>
<td>General Site Location for Tronox Westvaco</td>
<td>2</td>
</tr>
<tr>
<td>3-1</td>
<td>Tronox Westvaco Plot Plan</td>
<td>6</td>
</tr>
<tr>
<td>3-2</td>
<td>Building and Stack Layout for Tronox Westvaco Optimization Project and Other Sources</td>
<td>17</td>
</tr>
<tr>
<td>3-3</td>
<td>Receptor Grid for Tronox Westvaco Optimization Project SIL Analysis</td>
<td>19</td>
</tr>
<tr>
<td>3-4</td>
<td>Five-Year Wind Rose for Westvaco, 2008 to 2012</td>
<td>21</td>
</tr>
</tbody>
</table>

List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Model Input and Output Files</td>
</tr>
</tbody>
</table>
1.0 Introduction

FMC Wyoming Corporation (FMC), now TRONOX, contracted McVehil-Monnett Associates, Inc (MMA) to conduct air quality dispersion modeling for their Westvaco soda ash facility (Westvaco), located in the Green River Basin, Wyoming. See Figure 1-1. This modeling report provides the air quality impact analysis in support of the minor construction permit application, Application for Air Quality Permit to Construct at FMC Wyoming Corporation's Westvaco Facility (FMC, April 2015), submitted to Wyoming Department of Environmental Quality/Air Quality Division (WDEQ/AQD) under separate cover. The permit application addresses the Westvaco Optimization Project ("Project"), a minor modification to an existing major source.

This modeling report is presented as follows: Section 2.0 provides a brief description of the air dispersion model and the model methodologies used, Section 3.0 describes the Project, Sections 4.0 and 5.0 present the impact analyses, and Section 6.0 offers conclusions.

Model input and output files are provided on a CD in Appendix A.
Figure 1-1. General Site Location for Tronox (FMC) Westvaco, Green River Basin, Wyoming
2.0 Air Quality Dispersion Model and Modeling Methods Overview

Consistent with WDEQ/AQD guidance, MMA selected the air quality dispersion model AERMOD to assess impacts from Tronox Westvaco, employing the latest version (14134). AERMOD is a modeling system developed by the American Meteorological Society/EPA Regulatory Model Improvement Committee (AERMIC). The AERMIC model (AERMOD) modeling system consists of two main pre-processors: AERMAP for receptors and terrain, and AERMET for meteorology, and the AERMOD model itself. AERMOD is EPA's regulatory default model for assessing near-field impacts, defined as those impacts within 50 kilometers (km) of the source.

The modeling analysis presented herein followed MMA's modeling protocol that was submitted to WDEQ/AQD on March 17, 2015, with minor refinements. These refinements will be highlighted and explained during the applicable discussion.

Methodologies employed for the modeling analysis are based on EPA and WDEQ/AQD guidance found in the following documents:

- Wyoming Department of Environmental Quality/Air Quality Division Guidance for Conducting Near-Field Modeling Analyses for Minor Sources, November 2014 (WDEQ/AQD Minor Source Guidance)
- EPA Memorandum from R. Chris Owen and Roger Brode, "Clarification of the Use of AERMOD Dispersion Modeling for Demonstrating Compliance with the NO₂ Ambient Air Quality Standard" (September 30, 2014).
- EPA Memorandum from Tyler Fox, "Additional Clarification Regarding Application of Appendix W Guidance for the 1-hour NO₂ National Ambient Air Quality Standard" (March 1, 2011)
- EPA Memorandum from Stephen Page, "Guidance for PM₂.₅ Permit Modeling" (May 20, 2014)

Model inputs and control parameter options were selected in accordance with the protocol established in the GAQM and User’s Guide for the AMS/EPA Regulatory Model - AERMOD (EPA, November 2004, Revised May 2014).
Following WDEQ/AQD Minor Source Guidance, the air impact analysis for the Project was conducted in a two step process. First, the net emissions increase impacts for the Project alone were compared against the applicable Class II significant impact levels (SILs). If modeled impacts for a particular pollutant and averaging period were below the SIL, no further analysis was required. If modeled impacts for a particular pollutant and averaging period were above the SIL, the analysis moved to the second step and a full impact ambient air quality analysis was performed, evaluating impacts against the Wyoming Ambient Air Quality Standards (WAAQS) and increments, as applicable.
3.0 Source Description and Model Inputs

Tronox’s Westvaco site includes facilities for production of sodium carbonate (soda ash), sodium sesquicarbonate, sodium bicarbonate, and sodium hydroxide (caustic) from trona ore mined at the site. An additional production plant recovers alkali from supernatant from trona tailings streams that are pumped back into mine voids. The plot plan for the Westvaco plant is displayed in Figure 3-1.

3.1 Westvaco Optimization Project Description

As described in the Project minor source permit application, Tronox proposes incremental production increases at three of its plants at the Westvaco site for a combined increase of 109,000 tons per year of refined soda ash (RSA) from the facility. Project activities will include installation of additional piping to facilitate fluid handling, filter performance enhancements, integration of scale inhibitor equipment, energy management improvements, updated stripper column packing, various pump upgrades, and product transfer screw conveyor upgrades. Other elements of the Project include a small increase in caustic production, and re-commissioning of two small flyash baghouses.

The Westvaco site is a major source for particulate matter (PM\textsubscript{10}, PM\textsubscript{2.5}), sulfur dioxide (SO\textsubscript{2}), nitrogen oxides (NO\textsubscript{X}), carbon monoxide (CO), volatile organic compounds (VOC), and greenhouse gases (GHG). The modifications described in the permit application will result in minor increases in these pollutants. The project net emissions increase for each pollutant is less than its respective PSD significant emission rate.
3.2 Westvaco Optimization Project Emissions

The emission increases resulting from the Project are primarily a function of increased utilization of existing downstream process equipment and gas-fired boilers rather than a result of emissions from new equipment installation. There are two coal-fired boilers and five gas-fired boilers at the Westvaco site, and all of the boilers supply steam to a common header for distribution throughout the facility. Because Tronox has determined that there is little, if any, increased steam production increment available from the coal-fired boilers, the steam needed to facilitate the production rate increases from each plant will be provided from increased utilization of the gas-fired boilers.

Table 3-1 presents a summary of the calculated project emission increases derived from 2013 – 2014 baseline data. The total increases are compared to their respective PSD significant emission rate (SER) - no pollutant increase is above the respective SER. As such, the Project is a minor modification to a major source, and is not subject to PSD. Table 3-2 provides a list of all the sources at Westvaco involved with the Project, with specific emissions increases identified by pollutant. The permit application contains detailed derivation information for these values.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Project Net Emissions Increase, tons/yr</th>
<th>PSD Significant Emission Rate, tons/yr</th>
<th>Subject to PSD</th>
<th>Subject to Wyoming Minor Source Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>9.8</td>
<td>25</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>9.5</td>
<td>15</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>5.7</td>
<td>10</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SO$_{2}$</td>
<td>0.1</td>
<td>40</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>NO$_{x}$</td>
<td>37.4</td>
<td>40</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CO</td>
<td>15.9</td>
<td>100</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VOC</td>
<td>1.5</td>
<td>40</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>H$_{2}$S</td>
<td>0.1</td>
<td>10</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>H${2}$SO${4}$</td>
<td>0.0</td>
<td>7</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>0.0</td>
<td>3</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Pb</td>
<td>0.0</td>
<td>0.7</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CO$_{2}$e</td>
<td>37,005</td>
<td>75,000</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 3-2
Projected Emission Increase by Individual Source for the Westvaco Optimization Project

| Plant Area | Model ID | Source Description | PM10 | PM25 | SO2 | NOX | CO | VOC | H2S
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sesqui</td>
<td>PA4</td>
<td>Sesqui Plant Hammermill Crusher Vent</td>
<td>0.1551</td>
<td>0.1059</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PA5</td>
<td>Sesqui Plant Ore Screening Vent</td>
<td>0.1162</td>
<td>0.0984</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PA6</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>0.0720</td>
<td>0.0720</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PA7</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>0.0782</td>
<td>0.0782</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PA8</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>0.0769</td>
<td>0.0769</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PA9</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>0.0757</td>
<td>0.0757</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RA1</td>
<td>Baby Sesqui Gas Fired Calciner R3</td>
<td>0.2303</td>
<td>0.0893</td>
<td>-</td>
<td>0.3279</td>
<td>0.0236</td>
<td>0.0029</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RA23A</td>
<td>Sesqui Gas Fired Calciner R13</td>
<td>0.2076</td>
<td>0.1212</td>
<td>-</td>
<td>0.1135</td>
<td>0.1578</td>
<td>0.0128</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RA23B</td>
<td>Sesqui Gas Fired Calciner R13</td>
<td>0.2076</td>
<td>0.1212</td>
<td>-</td>
<td>0.1135</td>
<td>0.1578</td>
<td>0.0128</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RA24</td>
<td>Sesqui Gas Fired Calciner R13</td>
<td>0.8672</td>
<td>0.4094</td>
<td>-</td>
<td>1.0818</td>
<td>0.4789</td>
<td>0.0302</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RA25</td>
<td>Sesqui Fluid Bed Calciner R5</td>
<td>0.5500</td>
<td>0.2680</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RA26</td>
<td>Sesqui Fluid Bed Calciner R6</td>
<td>0.3916</td>
<td>0.2275</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RA28</td>
<td>Sesqui Bagging</td>
<td>0.1431</td>
<td>0.0567</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RA29</td>
<td>Sesqui Fluid Bed Calciner</td>
<td>0.2341</td>
<td>0.1427</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RA33</td>
<td>Sesqui Silo Storage Vent</td>
<td>0.2965</td>
<td>0.1592</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SESQCT1</td>
<td>Sesqui Cooling Tower</td>
<td>0.0374</td>
<td>0.0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SESQCT2</td>
<td>Cell #2</td>
<td>0.0374</td>
<td>0.0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SESQCT3</td>
<td>Cell #3</td>
<td>0.0374</td>
<td>0.0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SESQCT4</td>
<td>Cell #4</td>
<td>0.0374</td>
<td>0.0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SESQUPILE</td>
<td>Sesqui Pile Loading/Dozing</td>
<td>0.1084</td>
<td>0.0219</td>
<td>4.0E-5</td>
<td>0.0860</td>
<td>0.0236</td>
<td>0.0083</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SESQWE</td>
<td>Sesqui Pile Wind Erosion</td>
<td>0.0021</td>
<td>0.0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SesquiLoad</td>
<td>Sesqui Loadout and Prod. Handling</td>
<td>0.0232</td>
<td>0.0079</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mono</td>
<td>Mono6</td>
<td>Mono 1 Fluid Bed Dryer</td>
<td>0.2992</td>
<td>0.1746</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0052</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Mono9</td>
<td>Mono Railcar Loadout</td>
<td>0.1147</td>
<td>0.0456</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Mono10</td>
<td>Mono Bulk Truck Loadout</td>
<td>0.2050</td>
<td>0.0815</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Mono12</td>
<td>Mono Loadout Screening</td>
<td>0.1781</td>
<td>0.0858</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NS6</td>
<td>Mono 2 Fluid Bed Dryer</td>
<td>0.3374</td>
<td>0.1835</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0052</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MONO1CT</td>
<td>Mono 1 Cooling Tower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MONO1CT1</td>
<td>Cell 1</td>
<td>0.0351</td>
<td>0.0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MONO1CT2</td>
<td>Cell 2</td>
<td>0.0351</td>
<td>0.0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MONO2CT</td>
<td>Mono 2 Cooling Tower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MONO2CT1</td>
<td>Cell 1</td>
<td>0.0409</td>
<td>0.0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MONO2CT2</td>
<td>Cell 2</td>
<td>0.0409</td>
<td>0.0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MONO2CT3</td>
<td>Cell 3</td>
<td>0.0409</td>
<td>0.0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3-2
Projected Emission Increase by Individual Source for the Westvaco Optimization Project (Continued)

<table>
<thead>
<tr>
<th>Plant Area</th>
<th>Model ID</th>
<th>Source Description</th>
<th>PM10</th>
<th>PM25</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>VOC</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>PH1A</td>
<td>Sesqui Gas Fired Boilers</td>
<td>0.1973</td>
<td>0.1973</td>
<td>0.0161</td>
<td>6.1459</td>
<td>2.203</td>
<td>0.1450</td>
<td>-</td>
</tr>
<tr>
<td>Utilities</td>
<td>PH1B</td>
<td>Sesqui Gas Fired Boilers</td>
<td>0.2054</td>
<td>0.2054</td>
<td>0.0161</td>
<td>6.3271</td>
<td>2.2634</td>
<td>0.1490</td>
<td>-</td>
</tr>
<tr>
<td>Utilities</td>
<td>PH2</td>
<td>Sesqui Gas Fired Boiler</td>
<td>0.1369</td>
<td>0.1369</td>
<td>0.0121</td>
<td>4.2449</td>
<td>1.5224</td>
<td>0.1007</td>
<td>-</td>
</tr>
<tr>
<td>Utilities</td>
<td>PH3</td>
<td>Sesqui Gas Fired Boiler</td>
<td>0.3584</td>
<td>0.3584</td>
<td>0.0282</td>
<td>8.5019</td>
<td>3.955</td>
<td>0.2578</td>
<td>-</td>
</tr>
<tr>
<td>Utilities</td>
<td>MW5</td>
<td>Mine Water Plant Boiler</td>
<td>0.8417</td>
<td>0.8417</td>
<td>0.0644</td>
<td>5.8358</td>
<td>4.8813</td>
<td>0.6081</td>
<td>-</td>
</tr>
<tr>
<td>Utilities</td>
<td>NS10</td>
<td>Mono Power Flyash Silo Vent</td>
<td>0.3000</td>
<td>0.3000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Utilities</td>
<td>NS11</td>
<td>Mono Power Flyash Truck Loading</td>
<td>0.3000</td>
<td>0.3000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EDLM/LWP</td>
<td>MW1</td>
<td>Lime Silo</td>
<td>0.0265</td>
<td>0.0100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EDLM/LWP</td>
<td>MW2</td>
<td>Perlite Precoat Silo</td>
<td>0.0007</td>
<td>0.0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EDLM/LWP</td>
<td>MW3</td>
<td>Fluid Bed Dryer</td>
<td>0.9596</td>
<td>0.5317</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0120</td>
<td>-</td>
</tr>
<tr>
<td>EDLM/LWP</td>
<td>MW4</td>
<td>Mine Water Housekeeping</td>
<td>0.0894</td>
<td>0.0354</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EDLM/LWP</td>
<td>MW6</td>
<td>Mine Water Evaporator/Strippers</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1025</td>
</tr>
<tr>
<td>Caustic</td>
<td>RD3</td>
<td>Lime Slaker Vent</td>
<td>0.0091</td>
<td>0.0080</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Caustic</td>
<td>SM1</td>
<td>Gas Fired Lime Kiln</td>
<td>0.7178</td>
<td>0.3522</td>
<td>-</td>
<td>3.064</td>
<td>0.0621</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RAIL</td>
<td>WRAIL1</td>
<td>Switch Engines</td>
<td>0.0065</td>
<td>0.0064</td>
<td>0.0014</td>
<td>0.2551</td>
<td>0.0268</td>
<td>0.0156</td>
<td>-</td>
</tr>
<tr>
<td>RAIL</td>
<td>WRAIL2</td>
<td>Switch Engines</td>
<td>0.0065</td>
<td>0.0064</td>
<td>0.0014</td>
<td>0.2551</td>
<td>0.0268</td>
<td>0.0156</td>
<td>-</td>
</tr>
<tr>
<td>RAIL</td>
<td>WRAIL3</td>
<td>Switch Engines</td>
<td>0.0065</td>
<td>0.0064</td>
<td>0.0014</td>
<td>0.2551</td>
<td>0.0268</td>
<td>0.0156</td>
<td>-</td>
</tr>
<tr>
<td>RAIL</td>
<td>WRAIL4</td>
<td>Switch Engines</td>
<td>0.0065</td>
<td>0.0064</td>
<td>0.0014</td>
<td>0.2551</td>
<td>0.0268</td>
<td>0.0156</td>
<td>-</td>
</tr>
<tr>
<td>RAIL</td>
<td>WRAIL5</td>
<td>Switch Engines</td>
<td>0.0065</td>
<td>0.0064</td>
<td>0.0014</td>
<td>0.2551</td>
<td>0.0268</td>
<td>0.0156</td>
<td>-</td>
</tr>
<tr>
<td>RAIL</td>
<td>WRAIL6</td>
<td>Switch Engines</td>
<td>0.0065</td>
<td>0.0064</td>
<td>0.0014</td>
<td>0.2551</td>
<td>0.0268</td>
<td>0.0156</td>
<td>-</td>
</tr>
<tr>
<td>Project Total</td>
<td></td>
<td></td>
<td>9.5</td>
<td>5.7</td>
<td>0.1</td>
<td>37.4</td>
<td>15.9</td>
<td>1.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>
3.3 Model Input Description for the Significant Impact Level Analysis

Model input files for the Project were developed by Schnauber Consulting LLC (Schnauber Consulting), in coordination with MMA, and with some minor modifications by MMA.

3.3.1 Model Control Options

AERMOD was set to run in regulatory default mode in a rural region with concentration as output. The pollutant ID and averaging period were set as appropriate for each pollutant modeled.

3.3.2 Source Locations and Pollutants Emitted

Table 3-3 lists the sources involved in the Project, the locations in NAD83 UTM (Zone 12), mean sea level (MSL) elevations, model source type, and the specific pollutant types emitted. For area sources, the source location represents the southwest corner of the area source. Rail switch engines were represented by volume sources. Table 3-3 lists the location of the first and last of the volume sources in each linear series placed along the respective rail. Originally characterized in the protocol as area sources, switch engine sources were converted to volume sources by placing volume sources 30 meters apart along the center of each area source.

During development of the data inputs for the Project, corrections were made to the building location and mean sea level elevations in order to upgrade the coordinate system to NAD83. These locations and elevations are presented in Table 3-3 for this modeling report.
Table 3-3
Sources for Westvaco and Pollutants With Projected Increases for the Westvaco Optimization Project

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Description</th>
<th>Model Type</th>
<th>NAD83 UTM Easting (m)</th>
<th>NAD83 UTM Northing (m)</th>
<th>Elevation (m)</th>
<th>Pollutant Emitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM</td>
</tr>
<tr>
<td>PH1A</td>
<td>Sesqui #1 Gas-fired Boiler</td>
<td>Point</td>
<td>598585.2</td>
<td>4608520.3</td>
<td>1896.2</td>
<td>x</td>
</tr>
<tr>
<td>PH1B</td>
<td>Sesqui #2 Gas-fired Boiler</td>
<td>Point</td>
<td>598585.2</td>
<td>4608520.3</td>
<td>1896.2</td>
<td>x</td>
</tr>
<tr>
<td>PH2</td>
<td>Sesqui #3 Gas-fired Boiler</td>
<td>Point</td>
<td>598569.8</td>
<td>4608523.2</td>
<td>1896.2</td>
<td>x</td>
</tr>
<tr>
<td>PH3</td>
<td>Sesqui #4 Gas-fired Boiler</td>
<td>Point</td>
<td>598565.9</td>
<td>4608520.4</td>
<td>1896.2</td>
<td>x</td>
</tr>
<tr>
<td>MW5</td>
<td>#8 Gas-fired Boiler</td>
<td>Point</td>
<td>599322.4</td>
<td>4608231.4</td>
<td>1916.9</td>
<td>x</td>
</tr>
<tr>
<td>NS10</td>
<td>Mono Power Flyash Silo Vent</td>
<td>Point</td>
<td>599352.8</td>
<td>4608172.3</td>
<td>1917.4</td>
<td>x</td>
</tr>
<tr>
<td>NS11</td>
<td>Mono Power Flyash Truck Loading</td>
<td>Point</td>
<td>599352.7</td>
<td>4608168.0</td>
<td>1917.4</td>
<td>x</td>
</tr>
<tr>
<td>RA1</td>
<td>Baby Sesqui Calciner</td>
<td>Point</td>
<td>598744.4</td>
<td>4608579.1</td>
<td>1893.7</td>
<td>x</td>
</tr>
<tr>
<td>RA23A</td>
<td>Sesqui Gas Fired Calciner</td>
<td>Point</td>
<td>598786.1</td>
<td>4608695.8</td>
<td>1892.4</td>
<td>x</td>
</tr>
<tr>
<td>RA23B</td>
<td>Sesqui Gas Fired Calciner</td>
<td>Point</td>
<td>598792.8</td>
<td>4608695.9</td>
<td>1892.4</td>
<td>x</td>
</tr>
<tr>
<td>RA24</td>
<td>Sesqui Gas Fired Calciner</td>
<td>Point</td>
<td>598805.6</td>
<td>4608717.5</td>
<td>1892.4</td>
<td>x</td>
</tr>
<tr>
<td>RA25</td>
<td>Sesqui Fluid Bed Calciner R-5</td>
<td>Point</td>
<td>598844.0</td>
<td>4608683.4</td>
<td>1892.4</td>
<td>x</td>
</tr>
<tr>
<td>RA26</td>
<td>Sesqui Fluid Bed Calciner R-6</td>
<td>Point</td>
<td>598668.0</td>
<td>4608669.6</td>
<td>1892.8</td>
<td>x</td>
</tr>
<tr>
<td>RA28</td>
<td>Sesqui Bagging</td>
<td>Point</td>
<td>599174.5</td>
<td>4608684.2</td>
<td>1894.5</td>
<td>x</td>
</tr>
<tr>
<td>RA29</td>
<td>Sesqui Fluid Bed Calciner R-2</td>
<td>Point</td>
<td>598709.4</td>
<td>4608688.6</td>
<td>1892.8</td>
<td>x</td>
</tr>
<tr>
<td>SM1</td>
<td>Lime Kiln</td>
<td>Point</td>
<td>599619.8</td>
<td>4608140.1</td>
<td>1930.4</td>
<td>x</td>
</tr>
<tr>
<td>SESQPILE</td>
<td>Sesqui Pile Loading/Dozing</td>
<td>Area</td>
<td>598654.2</td>
<td>4608496.9</td>
<td>1894.9</td>
<td>x</td>
</tr>
<tr>
<td>SESQWE</td>
<td>Sesqui Pile Wind Erosion</td>
<td>Area</td>
<td>598654.2</td>
<td>4608496.9</td>
<td>1894.9</td>
<td>x</td>
</tr>
<tr>
<td>WRAIL1_1</td>
<td>Switch Engine 1 Vol 1</td>
<td>Volume</td>
<td>598339.1</td>
<td>4608736.7</td>
<td>1893.4</td>
<td>x</td>
</tr>
<tr>
<td>WRAIL1_11</td>
<td>Switch Engine 1 Vol 11</td>
<td>Volume</td>
<td>598639.0</td>
<td>4608742.0</td>
<td>1893.4</td>
<td>x</td>
</tr>
<tr>
<td>WRAIL2_1</td>
<td>Switch Engine 2 Vol 1</td>
<td>Volume</td>
<td>598656.1</td>
<td>4608742.3</td>
<td>1892.4</td>
<td>x</td>
</tr>
<tr>
<td>WRAIL2_11</td>
<td>Switch Engine 2 Vol 11</td>
<td>Volume</td>
<td>598956.0</td>
<td>4608747.6</td>
<td>1892.4</td>
<td>x</td>
</tr>
<tr>
<td>WRAIL3_1</td>
<td>Switch Engine 3 Vol 1</td>
<td>Volume</td>
<td>599147.5</td>
<td>4608717.3</td>
<td>1894.5</td>
<td>x</td>
</tr>
<tr>
<td>WRAIL3_8</td>
<td>Switch Engine 3 Vol 8</td>
<td>Volume</td>
<td>599356.3</td>
<td>4608695.4</td>
<td>1894.5</td>
<td>x</td>
</tr>
<tr>
<td>WRAIL4_1</td>
<td>Switch Engine 4 Vol 1</td>
<td>Volume</td>
<td>599358.3</td>
<td>4608694.8</td>
<td>1894.5</td>
<td>x</td>
</tr>
<tr>
<td>WRAIL4_8</td>
<td>Switch Engine 4 Vol 8</td>
<td>Volume</td>
<td>599567.1</td>
<td>4608672.9</td>
<td>1894.5</td>
<td>x</td>
</tr>
<tr>
<td>WRAIL5_1</td>
<td>Switch Engine 5 Vol 1</td>
<td>Volume</td>
<td>599410.7</td>
<td>4608555.3</td>
<td>1894.9</td>
<td>x</td>
</tr>
<tr>
<td>WRAIL5_9</td>
<td>Switch Engine 5 Vol 9</td>
<td>Volume</td>
<td>599649.0</td>
<td>4608584.6</td>
<td>1894.9</td>
<td>x</td>
</tr>
<tr>
<td>WRAIL6_1</td>
<td>Switch Engine 6 Vol 1</td>
<td>Volume</td>
<td>599724.3</td>
<td>4608593.2</td>
<td>1894.9</td>
<td>x</td>
</tr>
<tr>
<td>WRAIL6_9</td>
<td>Switch Engine 6 Vol 9</td>
<td>Volume</td>
<td>599940.0</td>
<td>4608698.5</td>
<td>1894.9</td>
<td>x</td>
</tr>
<tr>
<td>RD3</td>
<td>Lime Slaker Scrubber</td>
<td>Point</td>
<td>599612.1</td>
<td>4608029.2</td>
<td>1931.1</td>
<td>x</td>
</tr>
<tr>
<td>PA4</td>
<td>Sesqui Hammermill Crusher Vent</td>
<td>Point</td>
<td>598626.8</td>
<td>4608559.6</td>
<td>1894.9</td>
<td>x</td>
</tr>
<tr>
<td>PA5</td>
<td>Sesqui Plant Ore Screening Vent</td>
<td>Point</td>
<td>598643.5</td>
<td>4608518.1</td>
<td>1894.9</td>
<td>x</td>
</tr>
<tr>
<td>PA6</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>Point</td>
<td>598630.1</td>
<td>4608573.2</td>
<td>1894.9</td>
<td>x</td>
</tr>
<tr>
<td>PA7</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>Point</td>
<td>598635.6</td>
<td>4608573.2</td>
<td>1894.9</td>
<td>x</td>
</tr>
<tr>
<td>PA8</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>Point</td>
<td>598641.8</td>
<td>4608575.5</td>
<td>1894.9</td>
<td>x</td>
</tr>
<tr>
<td>PA9</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>Point</td>
<td>598649.4</td>
<td>4608575.2</td>
<td>1894.9</td>
<td>x</td>
</tr>
<tr>
<td>RA33</td>
<td>Sesqui Silo Storage Vent</td>
<td>Point</td>
<td>598767.7</td>
<td>4608765.8</td>
<td>1892.4</td>
<td>x</td>
</tr>
<tr>
<td>SESQCT1</td>
<td>Sesqui Cooling Twr Cell1</td>
<td>Point</td>
<td>598608.2</td>
<td>4607954.4</td>
<td>1917.2</td>
<td>x</td>
</tr>
<tr>
<td>SESQCT2</td>
<td>Sesqui Cooling Twr Cell2</td>
<td>Point</td>
<td>598608.4</td>
<td>4607943.7</td>
<td>1917.2</td>
<td>x</td>
</tr>
</tbody>
</table>
Table 3-3
Source Locations for Westvaco and Pollutants Emitted for the Westvaco Optimization Project (continued)

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Description</th>
<th>Model Type</th>
<th>NAD83 UTM Easting (m)</th>
<th>NAD83 UTM Northing (m)</th>
<th>Elevation (m)</th>
<th>PM</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESQCT3</td>
<td>Sesqui Cooling Twr Cell3</td>
<td>Point</td>
<td>598608.6</td>
<td>4607933.1</td>
<td>1917.2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESQCT4</td>
<td>Sesqui Cooling Twr Cell4</td>
<td>Point</td>
<td>598608.8</td>
<td>4607922.4</td>
<td>1917.2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO6</td>
<td>Mono 1 Fluid Bed Dryer</td>
<td>Point</td>
<td>599160.8</td>
<td>4608421.3</td>
<td>1915.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO9</td>
<td>Mono Railcar Loadout</td>
<td>Point</td>
<td>599361.2</td>
<td>4608563.0</td>
<td>1894.9</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO10</td>
<td>Mono Bulk Truck Loadout</td>
<td>Point</td>
<td>599369.7</td>
<td>4608575.2</td>
<td>1894.9</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO12</td>
<td>Mono Loadout Screening</td>
<td>Point</td>
<td>599217.5</td>
<td>4608572.0</td>
<td>1894.9</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS6</td>
<td>Mono 2 Fluid Bed Dryer</td>
<td>Point</td>
<td>599204.6</td>
<td>4608401.0</td>
<td>1915.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO1CT1</td>
<td>Mono1 Cooling Twr Cell1</td>
<td>Point</td>
<td>599259.3</td>
<td>4608365.3</td>
<td>1915.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO1CT2</td>
<td>Mono1 Cooling Twr Cell2</td>
<td>Point</td>
<td>599259.6</td>
<td>4608355.7</td>
<td>1915.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO2CT1</td>
<td>Mono2 Cooling Twr Cell1</td>
<td>Point</td>
<td>599258.9</td>
<td>4608423.9</td>
<td>1915.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO2CT2</td>
<td>Mono2 Cooling Twr Cell2</td>
<td>Point</td>
<td>599259.1</td>
<td>4608406.3</td>
<td>1915.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO2CT3</td>
<td>Mono2 Cooling Twr Cell3</td>
<td>Point</td>
<td>599259.5</td>
<td>4608393.8</td>
<td>1915.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW1</td>
<td>ELDM Lime Silo</td>
<td>Point</td>
<td>598966.9</td>
<td>4608125.3</td>
<td>1917.8</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW2</td>
<td>ELDM Perlite Precat Silo</td>
<td>Point</td>
<td>598964.0</td>
<td>4608142.6</td>
<td>1917.8</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW3</td>
<td>ELDM Fluid Bed Dryer</td>
<td>Point</td>
<td>598960.1</td>
<td>4608222.1</td>
<td>1917.8</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW4</td>
<td>Mine Water Housekeeping</td>
<td>Point</td>
<td>599260.3</td>
<td>4608575.9</td>
<td>1900.6</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3.3 Source Parameters and Model Characterization

Table 3-4 lists model input parameters for the point sources involved in the Project, with emission rates listed in Table 3-5. Model inputs for point sources consist of emission rate (in grams/second (g/s), as well as physical stack and plume parameters.

Table 3-6 provides model input parameters for volume and area sources involved in the Project, with emission rates listed in Table 3-7. Model inputs for area sources consist of emission rate in grams per second per square meter (g/s-m²), as well as physical size, orientation, and plume release parameters. Model inputs for volume sources are comprised of emission rate (g/s) and plume release parameters. Model characterization for the rail switch engines was refined from the modeling protocol, altering from area sources to volume sources and increasing the release height to 10 meters from 5 meters. These changes better represents the rail sources, and are consistent with previous modeling studies submitted to WDEQ/AQD.
Table 3-4
Point Source Modeled Input Parameters for the Westvaco Optimization Project

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Source Description</th>
<th>Stack Height (m)</th>
<th>Exit Temperature (K)</th>
<th>Exit Velocity (m/s)</th>
<th>Stack Diameter (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA4</td>
<td>Sesqui Plant Hammermill Crusher Vent</td>
<td>23.47</td>
<td>334.26</td>
<td>14.55</td>
<td>0.91</td>
</tr>
<tr>
<td>PA5</td>
<td>Sesqui Plant Ore Screening Vent</td>
<td>27.13</td>
<td>307.59</td>
<td>28.75</td>
<td>0.91</td>
</tr>
<tr>
<td>PA6</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>21.34</td>
<td>334.26</td>
<td>9.06</td>
<td>0.30</td>
</tr>
<tr>
<td>PA7</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>21.34</td>
<td>334.26</td>
<td>9.06</td>
<td>0.30</td>
</tr>
<tr>
<td>PA8</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>22.86</td>
<td>334.26</td>
<td>9.06</td>
<td>0.30</td>
</tr>
<tr>
<td>PA9</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>22.86</td>
<td>334.26</td>
<td>9.06</td>
<td>0.30</td>
</tr>
<tr>
<td>RA1</td>
<td>Baby Sesqui Gas Fired Calciner R3</td>
<td>17.22</td>
<td>350.93</td>
<td>23.27</td>
<td>0.46</td>
</tr>
<tr>
<td>RA23A</td>
<td>Sesqui Gas Fired Calciner R13</td>
<td>24.38</td>
<td>321.48</td>
<td>27.67</td>
<td>0.91</td>
</tr>
<tr>
<td>RA23B</td>
<td>Sesqui Gas Fired Calciner R13</td>
<td>24.38</td>
<td>321.48</td>
<td>27.67</td>
<td>0.91</td>
</tr>
<tr>
<td>RA24</td>
<td>Sesqui Gas Fired Calciner R13</td>
<td>24.38</td>
<td>337.04</td>
<td>20.76</td>
<td>1.37</td>
</tr>
<tr>
<td>RA25</td>
<td>Sesqui Fluid Bed Calciner R5</td>
<td>15.85</td>
<td>349.82</td>
<td>21.47</td>
<td>1.52</td>
</tr>
<tr>
<td>RA26</td>
<td>Sesqui Fluid Bed Calciner R6</td>
<td>30.48</td>
<td>338.71</td>
<td>27.68</td>
<td>1.52</td>
</tr>
<tr>
<td>RA28</td>
<td>Sesqui Bagging</td>
<td>19.96</td>
<td>298.15</td>
<td>12.13</td>
<td>0.61</td>
</tr>
<tr>
<td>RA29</td>
<td>Sesqui Fluid Bed Calciner</td>
<td>30.48</td>
<td>355.37</td>
<td>16.17</td>
<td>1.83</td>
</tr>
<tr>
<td>RA33</td>
<td>Sesqui Silo Storage Vent</td>
<td>48.77</td>
<td>296.48</td>
<td>21.12</td>
<td>1.07</td>
</tr>
<tr>
<td>SESQCT1</td>
<td>Cell #1</td>
<td>13.11</td>
<td>310.93</td>
<td>6.36</td>
<td>7.32</td>
</tr>
<tr>
<td>SESQCT2</td>
<td>Cell #2</td>
<td>13.11</td>
<td>310.93</td>
<td>6.36</td>
<td>7.32</td>
</tr>
<tr>
<td>SESQCT3</td>
<td>Cell #3</td>
<td>13.11</td>
<td>310.93</td>
<td>6.36</td>
<td>7.32</td>
</tr>
<tr>
<td>SESQCT4</td>
<td>Cell #4</td>
<td>13.11</td>
<td>310.93</td>
<td>6.36</td>
<td>7.32</td>
</tr>
<tr>
<td>Mono6</td>
<td>Mono 1 Fluid Bed Dryer</td>
<td>28.96</td>
<td>352.04</td>
<td>25.87</td>
<td>1.52</td>
</tr>
<tr>
<td>Mono9</td>
<td>Mono Railcar Loadout</td>
<td>12.19</td>
<td>294.26</td>
<td>14.55</td>
<td>0.61</td>
</tr>
<tr>
<td>Mono10</td>
<td>Mono Bulk Truck Loadout</td>
<td>27.13</td>
<td>299.82</td>
<td>19.89</td>
<td>0.61</td>
</tr>
<tr>
<td>Mono12</td>
<td>Mono Loadout Screening</td>
<td>19.51</td>
<td>293.71</td>
<td>17.25</td>
<td>0.91</td>
</tr>
<tr>
<td>NS6</td>
<td>Mono 2 Fluid Bed Dryer</td>
<td>28.96</td>
<td>343.15</td>
<td>18.68</td>
<td>1.98</td>
</tr>
<tr>
<td>MONO1CT1</td>
<td>Cell 1</td>
<td>20.12</td>
<td>310.93</td>
<td>9.98</td>
<td>5.49</td>
</tr>
<tr>
<td>MONO1CT2</td>
<td>Cell 2</td>
<td>20.12</td>
<td>310.93</td>
<td>9.98</td>
<td>5.49</td>
</tr>
<tr>
<td>MONO2CT1</td>
<td>Cell 1</td>
<td>20.12</td>
<td>310.93</td>
<td>8.53</td>
<td>7.32</td>
</tr>
<tr>
<td>MONO2CT2</td>
<td>Cell 2</td>
<td>20.12</td>
<td>310.93</td>
<td>8.53</td>
<td>7.32</td>
</tr>
<tr>
<td>MONO2CT3</td>
<td>Cell 3</td>
<td>20.12</td>
<td>310.93</td>
<td>8.53</td>
<td>7.32</td>
</tr>
<tr>
<td>PH1A</td>
<td>Sesqui Gas Fired Boilers</td>
<td>30.48</td>
<td>566.48</td>
<td>4.03</td>
<td>2.74</td>
</tr>
<tr>
<td>PH1B</td>
<td>Sesqui Gas Fired Boilers</td>
<td>30.48</td>
<td>566.48</td>
<td>4.03</td>
<td>2.74</td>
</tr>
<tr>
<td>PH2</td>
<td>Sesqui Gas Fired Boiler</td>
<td>21.34</td>
<td>394.26</td>
<td>5.18</td>
<td>2.29</td>
</tr>
<tr>
<td>PH3</td>
<td>Sesqui Gas Fired Boiler</td>
<td>21.34</td>
<td>394.26</td>
<td>8.34</td>
<td>2.29</td>
</tr>
<tr>
<td>MW5</td>
<td>Mine Water Plant Boiler</td>
<td>51.82</td>
<td>428.15</td>
<td>12.37</td>
<td>2.39</td>
</tr>
<tr>
<td>NS10</td>
<td>Mono Power Flyash Silo Vent</td>
<td>30.48</td>
<td>293.71</td>
<td>18.62</td>
<td>0.25</td>
</tr>
<tr>
<td>NS11</td>
<td>Mono Power Flyash Truck Loading</td>
<td>23.47</td>
<td>293.71</td>
<td>18.62</td>
<td>0.25</td>
</tr>
<tr>
<td>MW1</td>
<td>Lime Silo</td>
<td>26.92</td>
<td>297.04</td>
<td>12.94</td>
<td>0.30</td>
</tr>
<tr>
<td>MW2</td>
<td>Perlite Precoat Silo</td>
<td>21.34</td>
<td>297.04</td>
<td>9.06</td>
<td>0.30</td>
</tr>
<tr>
<td>MW3</td>
<td>Fluid Bed Dryer</td>
<td>42.67</td>
<td>338.71</td>
<td>18.38</td>
<td>1.98</td>
</tr>
<tr>
<td>MW4</td>
<td>Mine Water Housekeeping</td>
<td>30.78</td>
<td>293.15</td>
<td>16.04</td>
<td>0.43</td>
</tr>
<tr>
<td>RD3</td>
<td>Lime Slaker Vent</td>
<td>23.16</td>
<td>294.26</td>
<td>10.06</td>
<td>0.56</td>
</tr>
<tr>
<td>SM1</td>
<td>Gas Filed Lime Kiln</td>
<td>30.71</td>
<td>345.37</td>
<td>11.96</td>
<td>1.83</td>
</tr>
</tbody>
</table>
Table 3-5
Point Source Modeled Short- and Long-Term Net Emissions Increase for the Westvaco Optimization Project

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Source Description</th>
<th>PM_{10} (g/s)</th>
<th>$PM_{2.5}$ (g/s)</th>
<th>NO$_x$ (g/s)</th>
<th>SO$_2$ (g/s)</th>
<th>CO (g/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA4</td>
<td>Sesqui Plant Hammermill Crusher Vent</td>
<td>4.4617E-03</td>
<td>3.0464E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA5</td>
<td>Sesqui Plant Ore Screening Vent</td>
<td>3.3427E-03</td>
<td>2.8306E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA6</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>2.0712E-03</td>
<td>2.0712E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA7</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>2.2496E-03</td>
<td>2.2496E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA8</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>2.2122E-03</td>
<td>2.2122E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA9</td>
<td>Sesqui Plant Dissolver Vent</td>
<td>2.1776E-03</td>
<td>2.1776E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA1</td>
<td>Baby Sesqui Gas Fired Calciner R3</td>
<td>6.6250E-03</td>
<td>2.5689E-03</td>
<td>9.4326E-03</td>
<td></td>
<td>6.7889E-04</td>
</tr>
<tr>
<td>RA23A</td>
<td>Sesqui Gas Fired Calciner R13</td>
<td>5.9720E-03</td>
<td>3.4851E-03</td>
<td>3.2650E-03</td>
<td></td>
<td>4.5379E-03</td>
</tr>
<tr>
<td>RA23B</td>
<td>Sesqui Gas Fired Calciner R13</td>
<td>5.9720E-03</td>
<td>3.4851E-03</td>
<td>3.2650E-03</td>
<td></td>
<td>4.5379E-03</td>
</tr>
<tr>
<td>RA24</td>
<td>Sesqui Gas Fired Calciner R13</td>
<td>2.4946E-03</td>
<td>1.1777E-02</td>
<td>3.1120E-02</td>
<td></td>
<td>1.3776E-02</td>
</tr>
<tr>
<td>RA5</td>
<td>Sesqui Fluid Bed Calciner R5</td>
<td>1.5822E-02</td>
<td>7.7095E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA26</td>
<td>Sesqui Fluid Bed Calciner R6</td>
<td>1.1265E-02</td>
<td>6.5444E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA28</td>
<td>Sesqui Bagging</td>
<td>4.1165E-03</td>
<td>1.6311E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA29</td>
<td>Sesqui Fluid Bed Calciner</td>
<td>6.7343E-03</td>
<td>4.1050E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA33</td>
<td>Sesqui Silo Storage Vent</td>
<td>8.5293E-03</td>
<td>4.5796E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESQCT1</td>
<td>Cell #1</td>
<td>1.0766E-03</td>
<td>5.7533E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESQCT2</td>
<td>Cell #2</td>
<td>1.0766E-03</td>
<td>5.7533E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESQCT3</td>
<td>Cell #3</td>
<td>1.0766E-03</td>
<td>5.7533E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESQCT4</td>
<td>Cell #4</td>
<td>1.0766E-03</td>
<td>5.7533E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono6</td>
<td>Mono 1 Fluid Bed Dryer</td>
<td>8.6070E-03</td>
<td>5.0227E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono9</td>
<td>Mono Railcar Loadout</td>
<td>3.2995E-03</td>
<td>1.3118E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono10</td>
<td>Mono Bulk Truck Loadout</td>
<td>5.8972E-03</td>
<td>2.3445E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono12</td>
<td>Mono Loadout Screening</td>
<td>5.1233E-03</td>
<td>2.4682E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS6</td>
<td>Mono 2 Fluid Bed Dryer</td>
<td>9.7059E-03</td>
<td>5.2787E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO1CT1</td>
<td>Cell 1</td>
<td>1.0083E-03</td>
<td>2.8767E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO1CT2</td>
<td>Cell 2</td>
<td>1.0083E-03</td>
<td>2.8767E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO2CT1</td>
<td>Cell 1</td>
<td>1.1775E-03</td>
<td>4.8040E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO2CT2</td>
<td>Cell 2</td>
<td>1.1775E-03</td>
<td>4.8040E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONO2CT3</td>
<td>Cell 3</td>
<td>1.1775E-03</td>
<td>4.8040E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH1A</td>
<td>Sesqui Gas Fired Boilers</td>
<td>5.6757E-03</td>
<td>5.6757E-03</td>
<td>1.7680E-01</td>
<td>4.6314E-04</td>
<td>6.3373E-02</td>
</tr>
<tr>
<td>PH1B</td>
<td>Sesqui Gas Fired Boilers</td>
<td>5.9087E-03</td>
<td>5.9087E-03</td>
<td>1.7942E-01</td>
<td>4.6314E-04</td>
<td>6.5110E-02</td>
</tr>
<tr>
<td>PH2</td>
<td>Sesqui Gas Fired Boiler</td>
<td>3.9382E-03</td>
<td>3.9382E-03</td>
<td>1.2211E-01</td>
<td>3.4808E-04</td>
<td>4.3794E-02</td>
</tr>
<tr>
<td>PH3</td>
<td>Sesqui Gas Fired Boiler</td>
<td>1.0310E-02</td>
<td>1.0310E-02</td>
<td>2.4457E-01</td>
<td>8.1122E-04</td>
<td>1.1377E-01</td>
</tr>
<tr>
<td>MW5</td>
<td>Mine Water Plant Boiler</td>
<td>2.4213E-02</td>
<td>2.4213E-02</td>
<td>1.6788E-01</td>
<td>1.8526E-03</td>
<td>1.4042E-01</td>
</tr>
<tr>
<td>NS10</td>
<td>Mono Power Flyash Silo Vent</td>
<td>8.6300E-03</td>
<td>8.6300E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS11</td>
<td>Mono Power Flyash Truck Loading</td>
<td>8.6300E-03</td>
<td>8.6300E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW1</td>
<td>Lime Silo</td>
<td>7.6232E-04</td>
<td>2.8767E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW2</td>
<td>Perlite Precoat Silo</td>
<td>2.0137E-05</td>
<td>8.6300E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW3</td>
<td>Fluid Bed Dryer</td>
<td>2.7604E-02</td>
<td>1.5295E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW4</td>
<td>Mine Water Housekeeping</td>
<td>2.5717E-03</td>
<td>1.0183E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD3</td>
<td>Lime Slaker Vent</td>
<td>2.6178E-04</td>
<td>2.3013E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM1</td>
<td>Gas Fired Lime Kiln</td>
<td>2.0649E-02</td>
<td>1.0132E-02</td>
<td>8.8141E-02</td>
<td></td>
<td>1.7864E-03</td>
</tr>
</tbody>
</table>
Table 3-6
Area and Volume Source Modeled Input Parameters for the Westvaco Optimization Project

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Description</th>
<th>Source Type</th>
<th>Release Height (m)</th>
<th>Area: X-Dimension (m) Volume: Sigma-y (m)</th>
<th>Area: Y-Dimension (m) Volume: Sigma-z (m)</th>
<th>Area: Rotation Angle</th>
<th>Area: Sigma-z (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESQPILE</td>
<td>Sesqui Pile Loading/Dozing</td>
<td>Area</td>
<td>10</td>
<td>75</td>
<td>75</td>
<td>-1.01</td>
<td>2.33</td>
</tr>
<tr>
<td>SESQWE</td>
<td>Sesqui Pile Wind Erosion</td>
<td>Area</td>
<td>10</td>
<td>75</td>
<td>75</td>
<td>-1.01</td>
<td>0</td>
</tr>
<tr>
<td>SESQLOUT</td>
<td>Sesqui Loadout and Prod. Handling</td>
<td>Area</td>
<td>10</td>
<td>125</td>
<td>125</td>
<td>-1.01</td>
<td>1.16</td>
</tr>
<tr>
<td>WRAIL1_1-11</td>
<td>Switch Engines Volume¹</td>
<td>Volume¹</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WRAIL2_1-11</td>
<td>Switch Engines Volume¹</td>
<td>Volume¹</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WRAIL3_1-8</td>
<td>Switch Engines Volume¹</td>
<td>Volume¹</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WRAIL4_1-8</td>
<td>Switch Engines Volume¹</td>
<td>Volume¹</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WRAIL5_1-9</td>
<td>Switch Engines Volume¹</td>
<td>Volume¹</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WRAIL6_1-9</td>
<td>Switch Engines Volume¹</td>
<td>Volume¹</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

1. Parameters shown are for each volume source along the respective rail segment. For example, WRAIL1 is represented by 11 volume sources (WRAIL1_1 to WRAIL1_11), and each has a release height of 10 m, a sigma-y of 13.953 and a sigma-z of 2.33.

Table 3-7
Area and Volume Source Modeled Net Emissions Increase for the Westvaco Optimization Project

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Source Description</th>
<th>Source Type</th>
<th>PM₁₀ Annual (g/s-m²) or (g/s)</th>
<th>PM₂.₅ Annual (g/s-m²) or (g/s)</th>
<th>NOX 1-Hour and Annual (g/s-m²) or (g/s)</th>
<th>SO₂ 1-, 3- and 24-Hour, Annual (g/s-m²) or (g/s)</th>
<th>CO 1-Hour and 8-Hour (g/s-m²) or (g/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESQPILE</td>
<td>Sesqui Pile Loading/Dozing</td>
<td>Area¹</td>
<td>5.5100E-07</td>
<td>1.0700E-07</td>
<td>4.3900E-07</td>
<td>1.7800E-10</td>
<td>1.2100E-07</td>
</tr>
<tr>
<td>SESQWE</td>
<td>Sesqui Pile Wind Erosion</td>
<td>Area¹</td>
<td>1.0700E-08</td>
<td>2.1300E-09</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SESQLOUT</td>
<td>Sesqui Loadout and Prod. Handling</td>
<td>Area¹</td>
<td>4.4800E-08</td>
<td>1.2800E-08</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WRAIL1_1-11</td>
<td>Switch Engines Volume²</td>
<td>Volume²</td>
<td>1.8224E-05</td>
<td>1.8224E-05</td>
<td>6.6751E-04</td>
<td>3.6342E-06</td>
<td>7.0036E-05</td>
</tr>
<tr>
<td>WRAIL2_1-11</td>
<td>Switch Engines Volume²</td>
<td>Volume²</td>
<td>1.8224E-05</td>
<td>1.8224E-05</td>
<td>6.6751E-04</td>
<td>3.6342E-06</td>
<td>7.0036E-05</td>
</tr>
<tr>
<td>WRAIL3_1-8</td>
<td>Switch Engines Volume²</td>
<td>Volume²</td>
<td>2.5030E-05</td>
<td>2.5030E-05</td>
<td>9.1891E-04</td>
<td>4.9991E-06</td>
<td>9.6005E-05</td>
</tr>
<tr>
<td>WRAIL4_1-8</td>
<td>Switch Engines Volume²</td>
<td>Volume²</td>
<td>2.5030E-05</td>
<td>2.5030E-05</td>
<td>9.1891E-04</td>
<td>4.9991E-06</td>
<td>9.6005E-05</td>
</tr>
<tr>
<td>WRAIL5_1-9</td>
<td>Switch Engines Volume²</td>
<td>Volume²</td>
<td>2.2256E-05</td>
<td>2.2256E-05</td>
<td>8.1532E-04</td>
<td>4.4402E-06</td>
<td>8.5608E-05</td>
</tr>
<tr>
<td>WRAIL6_1-9</td>
<td>Switch Engines Volume²</td>
<td>Volume²</td>
<td>2.2256E-05</td>
<td>2.2256E-05</td>
<td>8.1532E-04</td>
<td>4.4402E-06</td>
<td>8.5608E-05</td>
</tr>
</tbody>
</table>

1. Emission rate for area sources are in g/s-m².
2. Emission rate for volume sources are in g/s. The emission rate shown represents the emissions for each volume source along the rail segment. For example, WRAIL1 is represented by 11 volume sources (WRAIL1_1 to WRAIL1_11), and each volume source along that rail has a NOx emission rate of 6.6751E-04 g/s.
The net emissions increase for the sources listed in Tables 3-5 and 3-7 are based on the tons per year listed in Table 3-2. Support for the calculation of the net emissions increase and modeled emission rates are described in the permit application.

3.3.4 Building Downwash

Building downwash parameters were generated for the point sources involved with the Project using BPIP-Prime (04274). The building corners and height were entered, with tiers as appropriate, as well as the stack location and height. The program generated downwash parameters for each stack, and these were incorporated into the model. The building and stack location layout used in BPIP-Prime is presented in Figure 3-2.
Figure 3-2. Building and Stack Layout for Tronox Westvaco Optimization Project and Other Sources
3.3.5 Receptor Grid

Discrete receptors in NAD83 UTM, Zone 12 coordinates for the SIL analysis for the Project were generated based on WDEQ/AQD Minor Source modeling guidance. The receptor grid was generated in a Cartesian coordinate system, with a series of nested grids centered on the Westvaco plant ambient air boundary. The placement for these nested grids and associated receptor spacing are summarized in Table 3-8, and the full grid is depicted in Figure 3-3.

<table>
<thead>
<tr>
<th>Distance From Ambient Air Boundary (km)</th>
<th>Receptor Spacing (m)</th>
<th>Grid Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Ambient Air Boundary</td>
<td>50</td>
<td>Cartesian</td>
</tr>
<tr>
<td>Ambient Boundary to 7</td>
<td>500</td>
<td>Cartesian</td>
</tr>
<tr>
<td>7 to 50</td>
<td>1000</td>
<td>Cartesian</td>
</tr>
</tbody>
</table>

Receptors were placed along the ambient air boundary at 50 meters spacing. From the ambient air boundary out to 7 kilometers (km), the spacing of the receptors was set at 500 meters. (The modeling protocol originally called for a 100-meter spaced receptor grid. During the modeling protocol meeting, WDEQ/AQD informed FMC and MMA that the 100-meter spaced grid listed in the WDEQ/AQD Minor Source Modeling Guidance is for receptors located within 1 km of the applicant sources, and as Westvaco's ambient air boundary is further than this distance, the 100-meter spaced grid was not required.) For receptors placed 7 to 50 km from the boundary, the spacing was set at 1000 meters. The total number of receptors for this analysis was about 12,100.

The discrete receptor grid generated above was processed through the most recent version of AERMAP (currently 11103), employing electronic digital elevation model (DEM) maps for the terrain analysis and MSL elevation extraction. The receptors and domain area were set in AERMAP in datum NAD83. AERMAP generated an output receptor file consisting of UTM Easting (m), UTM Northing (m), MSL elevation (m), and hill height scale (m) for each receptor.
Figure 3-3. Receptor Grid for Tronox Westvaco Optimization Project SIL Impact Analysis
3.3.6 Meteorological Data Selection and Processing

Hourly on-site meteorological data for 2008 to 2012 was employed for the modeling analysis. The parameters and collection levels are presented in Table 3-9.

<table>
<thead>
<tr>
<th>Meteorological Parameter</th>
<th>Collection Level (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>2</td>
</tr>
<tr>
<td>Wind Speed</td>
<td>10</td>
</tr>
<tr>
<td>Wind Direction</td>
<td>10</td>
</tr>
<tr>
<td>Sigma Theta</td>
<td>10</td>
</tr>
<tr>
<td>Total Precipitation</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Trinity Consultants, Inc. pre-processed the hourly meteorological data for this five-year data set using the latest version of AERMET (currently 14134), with concurrent Rock Springs, Wyoming National Weather Service (NWS) surface data, and Riverton, Wyoming upper air data. NWS surface data are necessary for cloud cover; however, no substitution of NWS data for missing on-site data was performed, per WDEQ/AQD. AERMET pre-processing was conducted per WDEQ/AQD requirements, including the establishment of AERSURFACE parameters.

The wind rose for the Westvaco five-year data set is displayed in Figure 3-4. Predominant wind directions are from the west at 30.5%, west-southwest at 16.2% and west-northwest at 14.5%. The mean wind speed is 4.3 m/s, with less than 3% calm winds.
Figure 3-4. Five-Year Wind Rose for Westvaco, 2008 to 2012
4.0 Significant Impact Level Air Quality Analysis Model Results

As discussed in Section 2.0, this modeling analysis followed the WDEQ/AQD Minor Source Guidance. To review, the first step in modeling the Project involved comparing impacts from the Project alone against the applicable SILs listed in Table 4-1 for each pollutant and averaging period. If the SIL was not exceeded for a particular pollutant and averaging period, further modeling was not required. If the SIL was exceeded for a particular pollutant and averaging period, then a comprehensive impact analysis was performed to determine compliance with the WAAQS and PSD increments, as applicable. The WAAQS/increment analysis included regional sources, and was limited to those receptors with concentrations above the applicable SIL.

Table 4-1
Class II Significant Impact Levels (μg/m³)
For Criteria Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual</th>
<th>24-Hour</th>
<th>8-Hour</th>
<th>3-Hour</th>
<th>1-Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM\textsubscript{10}1</td>
<td>1</td>
<td>5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PM\textsubscript{2.5}2</td>
<td>0.3</td>
<td>1.2</td>
<td>NA</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>NO\textsubscript{2}3</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>SO\textsubscript{2}4</td>
<td>1</td>
<td>5</td>
<td>NA</td>
<td>25</td>
<td>7.9</td>
</tr>
<tr>
<td>CO5</td>
<td>NA</td>
<td>NA</td>
<td>500</td>
<td>NA</td>
<td>2000</td>
</tr>
</tbody>
</table>

1. H1H 24-hour and annual from the five years modeled.
2. H1H of the five-year mean for 24-hour and annual.
3. Annual: H1H from the five years modeled; 1-Hour: the five-year mean of the H8H daily maximum 1-hour.
4. Annual, 3-Hour and 24-Hour: H1H from the five years modeled; 1-Hour: the five-year mean of the H4H daily maximum 1-hour.
5. H1H from the five years modeled.

To evaluate the Project impacts against the SILs, the affected sources were modeled using the source inputs and net emissions increases for the respective pollutants, as presented in Section 3.0. In addition, certain considerations were employed when modeling particulates as well as NO\textsubscript{2}.

For PM\textsubscript{10} and PM\textsubscript{2.5}, fugitive sources were not modeled when assessing 24-hour impacts per WDEQ/AQD standard methodology; the fugitive sources were included in the model when predicting annual impacts. Further, only direct PM\textsubscript{2.5} emissions were modeled. The Project is a minor modification and falls under Case 1 listed in EPA's PM\textsubscript{2.5} Guidance, with direct PM\textsubscript{2.5}...
emissions less than 10 tpy and NO\textsubscript{X} and SO\textsubscript{2} emissions less than 40 tpy, each. As a result, secondary PM\textsubscript{2.5} formation is considered negligible, and modeling of secondary PM\textsubscript{2.5} was not performed.

For modeling significant impacts from NO\textsubscript{X}, a Tier 1 level analysis was performed, i.e., 100% conversion of NO\textsubscript{X} to NO\textsubscript{2} was assumed. This methodology is required by the WDEQ/AQD Minor Source Modeling Guidance.

Project source data and building downwash parameters were entered into AERMOD, along with the receptor grid, and the model was run with the five years of pre-processed Westvaco-Rock Springs meteorological data. Modeled concentrations were compared against the Class II SILs for PM\textsubscript{10}, PM\textsubscript{2.5}, SO\textsubscript{2}, NO\textsubscript{2} and CO listed in Table 4-1. As indicated in this table, modeled concentrations used for significant impact determination were highest first-high (H1H) concentrations for short-term averages and maximum concentrations for annual averages for PM\textsubscript{10} 24-Hour and annual; SO\textsubscript{2} 3-hour, 24-hour and annual; NO\textsubscript{2} annual; and CO 1-hour and 8-hour. For PM\textsubscript{2.5}, the 24-hour and annual concentrations were the maximum five-year mean for each averaging period. For 1-hour NO\textsubscript{2}, the modeled concentration was the five-year mean of the highest 8th-high (H8H) 1-hour daily maximum. For 1-hour SO\textsubscript{2}, the modeled concentration was the five-year mean of the highest 4th-high (H4H) 1-hour daily maximum.

4.1 PM\textsubscript{10} Impacts from the Optimization Project

Table 4-2 presents model results for PM\textsubscript{10} for all five years for both 24-hour and annual averaging periods, and also lists the H1H for each period to compare against the SILs. The H1H 24-hour predicted concentration over the five-year period was 0.58 \(\mu \text{g/m}^3 \); the maximum modeled annual impact was 0.11 \(\mu \text{g/m}^3 \). Both the 24-hour and annual modeled concentrations are below the SILs, so no further modeling was required for this pollutant.
Table 4-2
Modeled PM$_{10}$ Impacts from AERMOD
For the Westvaco Optimization Project
Compared to Class II Significant Impact Levels

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Model Year</th>
<th>Modeled Concentration (μg/m3)</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>2008</td>
<td>0.45847 0.44134 0.11388</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>0.51223 0.47407 0.10694</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0.49030 0.39872 0.10368</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0.58398 0.49307 0.10730</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>0.38826 0.36642 0.10466</td>
<td>No</td>
</tr>
<tr>
<td>Maximum:</td>
<td></td>
<td>0.58398 0.49307 0.11388</td>
<td>No</td>
</tr>
</tbody>
</table>

4.2 **PM$_{2.5}$ Impacts from the Optimization Project**

Table 4-3 presents the modeled H1H five-year mean for PM$_{2.5}$ for both 24-hour and annual averaging periods. The maximum-modeled 24-hour mean was 0.27 μg/m3, while the annual impact was 0.06 μg/m3. Both the 24-hour and annual modeled concentrations are below the SILs, so no further modeling was required for this pollutant.

Table 4-3
Modeled PM$_{2.5}$ Impacts from AERMOD
For the Westvaco Optimization Project
Compared to Class II Significant Impact Levels

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Model Year</th>
<th>Modeled Concentration (μg/m3)</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$</td>
<td>2008-2012</td>
<td>0.26755 0.26175 0.05797</td>
<td>No</td>
</tr>
</tbody>
</table>

4.3 **NO$_2$ Impacts from the Optimization Project**

Table 4-4 presents model results for NO$_2$ for the maximum five-year mean of the H8H of the maximum daily 1-hour concentration, and the maximum annual for all five years. The maximum 5-year mean of the H8H of the daily maximum 1-hour concentration was predicted to be 7.51 μg/m3, while the maximum modeled annual impact was 0.37 μg/m3. The annual modeled concentration is below the SIL, so no further modeling was required for annual NO$_X$. The modeled maximum five-
year mean H8H 1-hour daily maximum concentration was above the SIL. As a result, further modeling was warranted for the WAAQS. Only one receptor was above the 1-hour NO₂ SIL, and the WAAQS analysis for that receptor is presented in Section 5.0.

Table 4-4
Modeled NO₂ Impacts from AERMOD
For the Westvaco Optimization Project
Compared to Class II Significant Impact Levels

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Model Year</th>
<th>Modeled Concentration (μg/m³)</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-Hour Annual 1-Hour Annual</td>
<td></td>
</tr>
<tr>
<td>NO₂</td>
<td>2008-2012</td>
<td>7.51678</td>
<td>(>7.5 μg/m³) Yes No</td>
</tr>
<tr>
<td>2008</td>
<td>2009</td>
<td>2010</td>
<td>2011 2012</td>
</tr>
<tr>
<td>0.37420</td>
<td>0.34927</td>
<td>0.36347</td>
<td>0.36370 0.34840</td>
</tr>
<tr>
<td>Maximum:</td>
<td>7.51678</td>
<td>0.37420</td>
<td>Yes No</td>
</tr>
</tbody>
</table>

4.4 SO₂ Impacts from the Optimization Project

Table 4-5 presents predicted modeled concentrations for SO₂ for all five years for 3-hour, 24-hour and annual, and also lists the maximum of the five-year mean of the H4H maximum daily 1-hour concentration. (Note that while the 24-hour and annual increment have been removed from the WDEQ/AQD standards, they are still applicable at the federal level until Wyoming is designated for the 2010 1-hour SO₂ standard.) The maximum 5-year mean of the H4H of the daily maximum 1-hour concentration was predicted to be 0.08 μg/m³. The H1H 3-hour predicted concentration over the five-year period was 0.03 μg/m³, while the H1H 24-hour predicted concentration over the five-year period was 0.01 μg/m³. The maximum modeled annual impact was 0.001 μg/m³. All modeled SO₂ concentrations are below the SILs for all averaging periods, and so no further modeling was required for this pollutant.
Table 4-5
Modeled SO₂ Impacts from AERMOD
For the Westvaco Optimization Project
Compared to Class II Significant Impact Levels

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Model Year</th>
<th>1-Hour</th>
<th>3-Hour</th>
<th>24-Hour</th>
<th>Annual</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-Hour</td>
<td>3-Hour</td>
<td>24-Hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H4H</td>
<td></td>
<td></td>
<td></td>
<td>(>7.9 μg/m³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>First</td>
<td></td>
<td></td>
<td></td>
<td>(>25 μg/m³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Second</td>
<td></td>
<td></td>
<td></td>
<td>(>5 μg/m³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td>(>1 μg/m³)</td>
</tr>
<tr>
<td>SO₂</td>
<td>2008-2012</td>
<td>0.07786</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>0.02448</td>
<td>0.02034</td>
<td>0.00873</td>
<td>0.00739</td>
<td>0.00167</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>0.02186</td>
<td>0.01871</td>
<td>0.00657</td>
<td>0.00633</td>
<td>0.00157</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0.02844</td>
<td>0.02437</td>
<td>0.00905</td>
<td>0.00750</td>
<td>0.00164</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0.02862</td>
<td>0.02088</td>
<td>0.00968</td>
<td>0.00828</td>
<td>0.00168</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>0.02585</td>
<td>0.02133</td>
<td>0.00674</td>
<td>0.00625</td>
<td>0.00159</td>
</tr>
<tr>
<td></td>
<td>Maximum:</td>
<td>0.07786</td>
<td>0.02862</td>
<td>0.02437</td>
<td>0.00968</td>
<td>0.00828</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

4.5 CO Impacts from the Optimization Project

Table 4-6 presents modeled results for CO for all five years and for both the 1-hour and 8-hour averaging period. The H1H 1-hour average concentration was 6.604 μg/m3 and the H1H 8-hour average concentration was 2.247 μg/m3. All modeled CO concentrations are below the SILs for all averaging periods, and so further modeling was required for this pollutant.

Table 4-6
Modeled CO Impacts from AERMOD
For the Westvaco Optimization Project
Compared to Class II Significant Impact Levels

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Model Year</th>
<th>Modeled Concentration (μg/m3)</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-Hour</td>
<td>8-Hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>First High</td>
<td>Second High</td>
</tr>
<tr>
<td>CO</td>
<td>2008</td>
<td>5.53146</td>
<td>4.52431</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>5.27619</td>
<td>4.33774</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>6.60355</td>
<td>5.80631</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>5.92055</td>
<td>4.79670</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>6.52196</td>
<td>5.18051</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>6.60355</td>
<td>5.80631</td>
</tr>
</tbody>
</table>

4.6 Ozone Impacts from the Optimization Project

Ozone formation cannot be modeled with AERMOD. Other available ground-based EPA models for ozone are not appropriate for permitting individual sources. Instead, a qualitative analysis was performed to assess the impact of the Project on regional ozone by comparing Project emission increases with those already existing in Sweetwater County, as well as assessing monitored ozone at monitors downwind of Westvaco.

Table 4-7 lists VOC and NO$_X$ emissions from the Project and emissions cataloged for Sweetwater County in the EPA Air Emissions database. Project net emission increases of VOCs and NO$_X$ are a very small fraction of Sweetwater County's inventory.
Table 4-7
Ozone Precursor Emission Increases for the Westvaco Optimization Project
Versus Existing Emissions in Sweetwater County (2011 Data)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Westvaco Optimization Project (tpy)</th>
<th>Sweetwater County (tpy)(^1)</th>
<th>% County Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO(_x)</td>
<td>37.7</td>
<td>37,799</td>
<td>0.01</td>
</tr>
<tr>
<td>VOCs</td>
<td>1.5</td>
<td>35,592</td>
<td>0.004</td>
</tr>
</tbody>
</table>

1. http://www.epa.gov/air/emissions/

Table 4-8 lists the H4H 8-hour ozone for Hiawatha and Wamsutter, two downwind stations from Westvaco, and for Moxa north-northwest of Westvaco, for the years 2012 to 2014. These data were obtained from EPA's AirData website. The current 8-hour ozone WAAQS is met at these three stations, with the three-year mean of the H4H 8-hour ozone concentration at each station below 75 ppb. The impact of the Project net emissions increase on these monitors in the future will be negligible, and thus maintenance of the ozone WAAQS for these monitors will not be threatened as a result of the Westvaco Optimization Project emissions of NO\(_x\) and VOCs.

Table 4-8
Maximum Monitored H4H 8-Hour Ozone Concentrations\(^1\)
For Years 2012 to 2014

<table>
<thead>
<tr>
<th>Station</th>
<th>H4H 8-Hour Ozone (ppb)</th>
<th>3-Year Mean</th>
<th>8-Hour Ozone WAAQS (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
<td>2013</td>
<td>2014</td>
</tr>
<tr>
<td>Moxa</td>
<td>65</td>
<td>67</td>
<td>63</td>
</tr>
<tr>
<td>Hiawatha</td>
<td>63</td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td>Wamsutter</td>
<td>63</td>
<td>64</td>
<td>60</td>
</tr>
</tbody>
</table>

1. http://www.epa.gov/airdata/
5.0 Wyoming Ambient Air Quality Analysis Model Results

As presented in Section 4.0, the Westvaco Optimization Project has significant impacts for 1-hour NO₂ only, and is not significant for annual NO₂, nor any of the other pollutants of PM₁₀, PM₂.₅, SO₂ and CO for the respective averaging periods. As a result, the only additional analysis that is required for WAAQS demonstration is the 1-hour NO₂ standard. At this time, there is no 1-hour NO₂ increment.

5.1 Model Setup

Model inputs included source data, building downwash (Westvaco sources only), receptor grid and meteorological data. Westvaco sources and background sources were included in the model. WDEQ/AQD provided MMA with the background source inventory, the details of which are discussed in Section 5.3. The provided background inventory also included WDEQ/AQD data for Westvaco, discussed in more detail in Section 5.2.

For this analysis, the model was run with PVMRM, a Tier 3 ozone limiting method. The default in-stack ratio (ISR) was set at 0.2, which was applied to the background sources. Using a 0.2 ISR is recommended for sources greater than 3 km from the applicant source in EPA's September 2014 memorandum. The equilibrium ratio was set at the default value in AERMOD of 0.9.

WDEQ/AQD provided hourly data from the Moxa Station for background ozone. These data were further processed into a seasonal hour distribution. See Section 5.4 for further discussion.

5.2 Westvaco Model Inputs

5.2.1 Modeled NOₓ Sources

Schnauber Consulting provided MMA with a NOₓ source inventory for Westvaco to be used in the modeling. As with the Project inventory, these data contain the corrected locations for the buildings and stacks, as well as the respective elevations. The inventory also contains corrections to the WDEQ/AQD data inventory for Westvaco.
Table 5-1 presents the model parameters for the point sources inventory for NO$_X$. Sources MT04 and MT05 were missing from the WDEQ/AQD inventory, but were added to this WAAQS analysis. The mine vent emissions and exit velocity found in the WDEQ/AQD inventory were corrected, as well as the stack height for SM1. The ISRs used for the point sources are based on on-site stack testing of the actual source, or testing of similar sources at this or other similar facilities.

Table 5-2 lists the modeled parameters for the area sources. As with the point sources, several parameters were modified from those found in the WDEQ/AQD inventory. These parameters include emission rates and rotation angle for all the area sources, the COALPILE dimensions, and PLANTMBL dimensions. PLANTMBL release height was increased from 5 meters to 10 meters to be more consistent with other modeling analyses in Wyoming. The ISR used for these sources is based on data from the San Joaquin Valley Air Pollution Control District for heavy diesel-fired equipment, *Modeling Compliance of the Federal 1-Hour NO$_2$ NAAQS* (California Air Pollution Control Officers Association (CAPCOA), October 2011).

Table 5-3 catalogs the modeled parameters for volume sources. Consistent with the SILs analysis, switch engine sources originally characterized as area sources were converted to volume sources by placing volume sources 30-meters apart along the center of each area source. The emission rates given by WDEQ/AQD were corrected by Schnauber Consulting, and then converted to equivalent emissions for the volume sources along the rail. Table 5-3 lists the first and last volume source along each segment, with the model source parameters for the respective volume sources in between being identical except for the UTM locations. The ISR is based on a referenced source test for locomotives, *US Locomotive After-treatment Retrofit Progress Report: SwRI Test Programs* (Fritz, S, 2007), and is similar to the heavy equipment ISR.
<table>
<thead>
<tr>
<th>Model ID</th>
<th>Description</th>
<th>Type</th>
<th>NAD83 UTM Easting (m)</th>
<th>NAD83 UTM Northing (m)</th>
<th>MSL Elevation (m)</th>
<th>NOX Emissions (g/s)</th>
<th>Stack Height (m)</th>
<th>Stack Temperature (K)</th>
<th>Exit Velocity (m/s)</th>
<th>Stack Diameter (m)</th>
<th>In-Stack Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA1</td>
<td>Baby Sesqui Calciner R-3 POINT</td>
<td>598744.4</td>
<td>4608579.1</td>
<td>1893.7</td>
<td>0.3276</td>
<td>17.22</td>
<td>350.9</td>
<td>23.27</td>
<td>0.46</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>RA23A</td>
<td>Sesqui Gas Fired Calciner R-13 POINT</td>
<td>598786.1</td>
<td>4608695.8</td>
<td>1892.4</td>
<td>0.7182</td>
<td>24.38</td>
<td>321.5</td>
<td>27.67</td>
<td>0.91</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>RA23B</td>
<td>Sesqui Gas Fired Calciner R-13 POINT</td>
<td>598792.8</td>
<td>4608695.9</td>
<td>1892.4</td>
<td>0.7182</td>
<td>24.38</td>
<td>321.5</td>
<td>27.67</td>
<td>0.91</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>RA24</td>
<td>Sesqui Gas Fired Calciner R-15 POINT</td>
<td>598805.6</td>
<td>4608717.5</td>
<td>1892.4</td>
<td>2.0110</td>
<td>24.38</td>
<td>337.0</td>
<td>20.76</td>
<td>1.37</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>MONO5</td>
<td>Mono 1 Gas Fired Calciner POINT</td>
<td>599100.0</td>
<td>4608286.4</td>
<td>1915.1</td>
<td>2.5994</td>
<td>28.96</td>
<td>348.7</td>
<td>25.61</td>
<td>1.52</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>NS3</td>
<td>Mono 2 Gas Fired Calciner POINT</td>
<td>599221.3</td>
<td>4608269.5</td>
<td>1915.1</td>
<td>5.2164</td>
<td>31.70</td>
<td>480.4</td>
<td>22.83</td>
<td>2.44</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>NS1A</td>
<td>Mono #6 Coal/Gas Fired Boiler POINT</td>
<td>599284.4</td>
<td>4608167.0</td>
<td>1916.9</td>
<td>35.7840</td>
<td>91.44</td>
<td>349.8</td>
<td>17.56</td>
<td>3.51</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>SM1</td>
<td>Gas Fired Lime Kiln POINT</td>
<td>599619.8</td>
<td>4608140.1</td>
<td>1928.2</td>
<td>4.0824</td>
<td>30.71</td>
<td>345.4</td>
<td>11.96</td>
<td>1.83</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>PH1A</td>
<td>Sesqui #1 Gas-fired Boiler POINT</td>
<td>598585.2</td>
<td>4608520.3</td>
<td>1896.2</td>
<td>4.8334</td>
<td>30.48</td>
<td>566.5</td>
<td>4.03</td>
<td>2.74</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>PH1B</td>
<td>Sesqui #2 Gas-fired Boiler POINT</td>
<td>598585.2</td>
<td>4608520.3</td>
<td>1896.2</td>
<td>4.8334</td>
<td>30.48</td>
<td>566.5</td>
<td>4.03</td>
<td>2.74</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>PH2</td>
<td>Sesqui #3 Gas-fired Boiler POINT</td>
<td>598569.8</td>
<td>4608523.2</td>
<td>1896.2</td>
<td>4.8334</td>
<td>21.34</td>
<td>394.3</td>
<td>5.17</td>
<td>2.29</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>PH3</td>
<td>Sesqui #4 Gas-fired Boiler POINT</td>
<td>598565.9</td>
<td>4608520.4</td>
<td>1896.2</td>
<td>9.6680</td>
<td>21.34</td>
<td>394.3</td>
<td>8.34</td>
<td>2.29</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>MW5</td>
<td>#8 Gas-fired Boiler POINT</td>
<td>599322.4</td>
<td>4608231.4</td>
<td>1916.9</td>
<td>3.9690</td>
<td>51.82</td>
<td>428.2</td>
<td>12.37</td>
<td>2.39</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>NS1B</td>
<td>Mono #7 Coal/Gas Fired Boiler POINT</td>
<td>599288.2</td>
<td>4608167.1</td>
<td>1916.9</td>
<td>35.7840</td>
<td>91.44</td>
<td>349.8</td>
<td>17.56</td>
<td>3.51</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>RA22A</td>
<td>Sesqui Gas-fired Calciner R-9 POINT</td>
<td>598762.2</td>
<td>4608692.3</td>
<td>1892.4</td>
<td>0.5027</td>
<td>19.51</td>
<td>335.4</td>
<td>15.05</td>
<td>1.07</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>RA22B</td>
<td>Sesqui Gas-fired Calciner R-9 POINT</td>
<td>598765.4</td>
<td>4608692.4</td>
<td>1892.4</td>
<td>0.5027</td>
<td>19.51</td>
<td>335.4</td>
<td>15.05</td>
<td>1.07</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>MT04</td>
<td>BMT No. 1 Mill POINT</td>
<td>598186.2</td>
<td>4608651.8</td>
<td>1894.5</td>
<td>0.0680</td>
<td>22.86</td>
<td>316.5</td>
<td>20.49</td>
<td>0.61</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>MT05</td>
<td>BMT No. 2 Mill POINT</td>
<td>598186.8</td>
<td>4608616.8</td>
<td>1894.5</td>
<td>0.0680</td>
<td>22.86</td>
<td>316.5</td>
<td>20.49</td>
<td>0.61</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>MINVENT2</td>
<td>Mine Vent 2 POINT</td>
<td>598647.7</td>
<td>4608544.5</td>
<td>1894.9</td>
<td>0.1338</td>
<td>1.52</td>
<td>294.0</td>
<td>3.14</td>
<td>4.27</td>
<td>0.110</td>
<td></td>
</tr>
<tr>
<td>MINVENT3</td>
<td>Mine Vent 3 POINT</td>
<td>597678.4</td>
<td>4606753.2</td>
<td>1937.1</td>
<td>0.1190</td>
<td>0.91</td>
<td>294.0</td>
<td>1.80</td>
<td>5.49</td>
<td>0.110</td>
<td></td>
</tr>
<tr>
<td>MINVENT4</td>
<td>Mine Vent 4 POINT</td>
<td>599151.6</td>
<td>4608142.5</td>
<td>1918.1</td>
<td>0.7063</td>
<td>10.06</td>
<td>294.0</td>
<td>4.27</td>
<td>7.32</td>
<td>0.110</td>
<td></td>
</tr>
<tr>
<td>MINVENT6</td>
<td>Mine Vent 6 POINT</td>
<td>597683.0</td>
<td>4604318.0</td>
<td>1927.0</td>
<td>0.7287</td>
<td>0.91</td>
<td>294.0</td>
<td>4.68</td>
<td>6.71</td>
<td>0.110</td>
<td></td>
</tr>
<tr>
<td>MINVENT9</td>
<td>Mine Vent 9 POINT</td>
<td>595797.0</td>
<td>4599174.0</td>
<td>1949.6</td>
<td>0.3941</td>
<td>0.91</td>
<td>294.0</td>
<td>5.99</td>
<td>5.49</td>
<td>0.110</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-2
Modeled Area Sources for NOX for Tronox Westvaco

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Description</th>
<th>Type</th>
<th>NAD83 UTM Easting (m)</th>
<th>NAD83 UTM Northing (m)</th>
<th>MSL Elevation (m)</th>
<th>NOX Emissions (g/s-m^2)</th>
<th>Release Height (m)</th>
<th>X-Dimension (m)</th>
<th>Y-Dimension (m)</th>
<th>Rotation Angle</th>
<th>In-Stack Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESQPILE</td>
<td>Sesqui Pile Loading/Dozing</td>
<td>AREA</td>
<td>598654.2</td>
<td>4608496.9</td>
<td>1894.9</td>
<td>1.1800E-05</td>
<td>10</td>
<td>75</td>
<td>75</td>
<td>-1.01</td>
<td>0.11</td>
</tr>
<tr>
<td>MONOPILE</td>
<td>Mono Pile Loading/Dozing</td>
<td>AREA</td>
<td>599106.0</td>
<td>4607890.7</td>
<td>1918.4</td>
<td>6.2800E-06</td>
<td>21</td>
<td>200</td>
<td>200</td>
<td>-1.01</td>
<td>0.11</td>
</tr>
<tr>
<td>COALPILE</td>
<td>Coal Pile Unloading/Adding Mat./Dozing</td>
<td>AREA</td>
<td>599611.3</td>
<td>4608278.0</td>
<td>1908.4</td>
<td>4.9100E-06</td>
<td>16</td>
<td>110</td>
<td>110</td>
<td>-51</td>
<td>0.11</td>
</tr>
<tr>
<td>PLANTMBL</td>
<td>Plant Mobile Source Tailpipe</td>
<td>AREA</td>
<td>598128.9</td>
<td>4607905.9</td>
<td>1906.5</td>
<td>7.9800E-07</td>
<td>10</td>
<td>1708</td>
<td>797</td>
<td>-1.01</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Table 5-3
Modeled Volume Sources (First and Last Volume Source) for NOX for Tronox Westvaco

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Description</th>
<th>Total Number of Volume Sources</th>
<th>Type</th>
<th>NAD83 UTM Easting (m)</th>
<th>NAD83 UTM Northing (m)</th>
<th>MSL Elevation (m)</th>
<th>NOX Emissions (g/s)</th>
<th>Release Height (m)</th>
<th>Sigma-y (m)</th>
<th>Sigma-z (m)</th>
<th>In-Stack Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRAIL1_1</td>
<td>Switch Engine 1 Vol 1</td>
<td>11</td>
<td>VOLUME</td>
<td>598339.1</td>
<td>4608736.7</td>
<td>1893.4</td>
<td>2.8396E-02</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL1_11</td>
<td>Switch Engine 1 Vol 11</td>
<td></td>
<td>VOLUME</td>
<td>598639.0</td>
<td>4608742.0</td>
<td>1893.4</td>
<td>2.8396E-02</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL2_1</td>
<td>Switch Engine 2 Vol 1</td>
<td>11</td>
<td>VOLUME</td>
<td>598656.1</td>
<td>4608742.3</td>
<td>1892.35</td>
<td>2.8396E-02</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL2_11</td>
<td>Switch Engine 2 Vol 11</td>
<td></td>
<td>VOLUME</td>
<td>598956.0</td>
<td>4608747.6</td>
<td>1892.35</td>
<td>2.8396E-02</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL3_1</td>
<td>Switch Engine 3 Vol 1</td>
<td>8</td>
<td>VOLUME</td>
<td>599147.5</td>
<td>4608717.3</td>
<td>1894.48</td>
<td>3.8951E-02</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL3_8</td>
<td>Switch Engine 3 Vol 8</td>
<td>8</td>
<td>VOLUME</td>
<td>599356.3</td>
<td>4608695.4</td>
<td>1894.48</td>
<td>3.8951E-02</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL4_1</td>
<td>Switch Engine 4 Vol 1</td>
<td>8</td>
<td>VOLUME</td>
<td>599358.3</td>
<td>4608694.8</td>
<td>1894.48</td>
<td>3.8951E-02</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL4_8</td>
<td>Switch Engine 4 Vol 8</td>
<td>8</td>
<td>VOLUME</td>
<td>599567.1</td>
<td>4608672.9</td>
<td>1894.48</td>
<td>3.8951E-02</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL5_1</td>
<td>Switch Engine 5 Vol 1</td>
<td>9</td>
<td>VOLUME</td>
<td>599410.7</td>
<td>4608555.3</td>
<td>1894.94</td>
<td>3.4596E-02</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL5_9</td>
<td>Switch Engine 5 Vol 9</td>
<td>9</td>
<td>VOLUME</td>
<td>599649.0</td>
<td>4608584.6</td>
<td>1894.94</td>
<td>3.4596E-02</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL6_1</td>
<td>Switch Engine 6 Vol 1</td>
<td>9</td>
<td>VOLUME</td>
<td>599724.3</td>
<td>4608593.2</td>
<td>1894.94</td>
<td>3.4596E-02</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL6_9</td>
<td>Switch Engine 6 Vol 9</td>
<td>9</td>
<td>VOLUME</td>
<td>599940.0</td>
<td>4608698.5</td>
<td>1894.94</td>
<td>3.4596E-02</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL7_1</td>
<td>Switch Engine 7 Vol 1</td>
<td>5</td>
<td>VOLUME</td>
<td>598164.4</td>
<td>4608668.5</td>
<td>1894.5</td>
<td>3.7162E-03</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
<tr>
<td>WRAIL7_5</td>
<td>Switch Engine 7 Vol 5</td>
<td></td>
<td>VOLUME</td>
<td>598272.3</td>
<td>4608721.1</td>
<td>1894.5</td>
<td>3.7162E-03</td>
<td>10</td>
<td>13.953</td>
<td>2.33</td>
<td>0.15</td>
</tr>
</tbody>
</table>
5.2.2 Building Downwash
Building downwash parameters were re-generated for the point sources involved in the WAAQS analysis using BPIP-Prime (04274). The program generated downwash parameters for each stack, and these were incorporated into the model. The building and stack location layout used in BPIP-Prime is presented in Figure 3-2.

5.2.3 Receptor Grid
The WAAQS analysis is restricted to the receptors that exceed the SILs. For this analysis, this is limited to one single receptor with UTM location 597677.3 m East, 4608392.3 m North.

5.2.4 Meteorological Data
The same meteorological data as used in the SILs analysis was used in the WAAQS analysis.

5.3 Background Sources
WDEQ/AQD provided NOX background sources to be used in the modeling, including model source parameters. This inventory consisted of 23 sources listed in Table 5-4. All were located greater than 3 km from Westvaco.
Table 5-4
Background NOx Sources Modeled with Tronox Westvaco

<table>
<thead>
<tr>
<th>Source</th>
<th>East/West (km)</th>
<th>North/South (km)</th>
<th>Distance (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tronox Granger</td>
<td>-6.8</td>
<td>5.6</td>
<td>8.8</td>
</tr>
<tr>
<td>KA Energy - Waterfall CS</td>
<td>-51.5</td>
<td>25.2</td>
<td>57.3</td>
</tr>
<tr>
<td>DCP Midstream – Fossil Ridge GP</td>
<td>-11.3</td>
<td>-1.6</td>
<td>11.4</td>
</tr>
<tr>
<td>Enterprise Products - Pioneer Cryogenic Gas Plant</td>
<td>-42.9</td>
<td>18.1</td>
<td>46.6</td>
</tr>
<tr>
<td>Exxon - Shute Creek GP</td>
<td>-23.0</td>
<td>28.7</td>
<td>56.8</td>
</tr>
<tr>
<td>TATA/General Chemical - Green River</td>
<td>5.1</td>
<td>-3.2</td>
<td>6.0</td>
</tr>
<tr>
<td>Mid America Pipeline – Granger</td>
<td>-13.4</td>
<td>-6.8</td>
<td>15.0</td>
</tr>
<tr>
<td>M-I SWACO – Granger</td>
<td>-12.8</td>
<td>-3.3</td>
<td>13.2</td>
</tr>
<tr>
<td>MGR – Fabian Ditch CS</td>
<td>-11.2</td>
<td>4.8</td>
<td>12.1</td>
</tr>
<tr>
<td>WGR - Granger Gas Plant</td>
<td>-11.3</td>
<td>-9.3</td>
<td>14.6</td>
</tr>
<tr>
<td>MGR - Sevenmile Gulch CS</td>
<td>-19.4</td>
<td>19.6</td>
<td>27.5</td>
</tr>
<tr>
<td>Nelson Refining - Silver Refinery</td>
<td>-12.3</td>
<td>-3.8</td>
<td>12.8</td>
</tr>
<tr>
<td>OCI - Big Island</td>
<td>10.3</td>
<td>10.8</td>
<td>14.9</td>
</tr>
<tr>
<td>Questar - Roberson Creek CS</td>
<td>-45.5</td>
<td>7.8</td>
<td>46.2</td>
</tr>
<tr>
<td>QEP - Blacks Fork GP</td>
<td>-19.2</td>
<td>-7.8</td>
<td>20.8</td>
</tr>
<tr>
<td>Questar - CKN Rock Springs Station</td>
<td>42.2</td>
<td>-10.5</td>
<td>43.5</td>
</tr>
<tr>
<td>Questar - Eakin CS</td>
<td>-35.2</td>
<td>-20.4</td>
<td>40.7</td>
</tr>
<tr>
<td>Questar - Lateral 1127</td>
<td>-18.6</td>
<td>-10.4</td>
<td>21.3</td>
</tr>
<tr>
<td>Saurus - MH-1 CS</td>
<td>24.6</td>
<td>-17.3</td>
<td>30.0</td>
</tr>
<tr>
<td>Solvay – Green River</td>
<td>5.2</td>
<td>-13.5</td>
<td>14.5</td>
</tr>
<tr>
<td>Wexpro - Church Butte Central Facility</td>
<td>-22.2</td>
<td>-25.2</td>
<td>33.6</td>
</tr>
<tr>
<td>Williams - Hams Fork CS</td>
<td>-34.3</td>
<td>27.1</td>
<td>43.7</td>
</tr>
<tr>
<td>Williams - Moxa S CS</td>
<td>-23.0</td>
<td>-2.7</td>
<td>23.2</td>
</tr>
</tbody>
</table>

The WDEQ/AQD-provided model parameters for all the background sources were used in the modeling analysis without alteration, with two exceptions. First, all locations were converted from NAD27 to NAD83. Second, the Tronox Granger Plant inventory sources were modified by Schnauber Consulting based on knowledge of the plant, and provided to MMA. The modeled source parameters for Tronox Granger are listed in Table 5-5. Only four sources operate at the site, instead of 10 indicated in the WDEQ/AQD inventory. Corrections were made to the boilers for emission rate and exit temperature, and to the mobile equipment emission rate and area source parameters. Boiler ISRs listed in Table 5-5 are based on stack testing.
Table 5-5
Modeled Input Parameters for NO\textsubscript{x} Sources for Tronox Granger

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Description</th>
<th>Type</th>
<th>NAD83 UTM Easting (m)</th>
<th>NAD83 UTM Northing (m)</th>
<th>Elevation (m)</th>
<th>Emission Rate (g/s)</th>
<th>Stack Height (m)</th>
<th>Stack Temp (K)</th>
<th>Exit Vel. (m/s)</th>
<th>Stack Diam (m)</th>
<th>ISR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSAP_14</td>
<td>#1 Coal Fired Boiler</td>
<td>POINT</td>
<td>591657.0</td>
<td>4614113.9</td>
<td>1938.8</td>
<td>31.6197</td>
<td>45.72</td>
<td>352.4</td>
<td>21.3</td>
<td>1.98</td>
<td>0.004</td>
</tr>
<tr>
<td>GSAP_15</td>
<td>#2 Coal Fired Boiler</td>
<td>POINT</td>
<td>591670.3</td>
<td>4614100.2</td>
<td>1938.8</td>
<td>31.6197</td>
<td>45.72</td>
<td>352.4</td>
<td>21.3</td>
<td>1.98</td>
<td>0.004</td>
</tr>
<tr>
<td>GSAP_C1</td>
<td># Coal Fired Boiler</td>
<td>POINT</td>
<td>591658.0</td>
<td>4614070.2</td>
<td>1940.1</td>
<td>3.528</td>
<td>39.62</td>
<td>447.0</td>
<td>10.3</td>
<td>2.13</td>
<td>0.079</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Type</th>
<th>NAD83 UTM Easting (m)</th>
<th>NAD83 UTM Northing (m)</th>
<th>Elevation (m)</th>
<th>Emission Rate (g/s-m2)</th>
<th>Release Height</th>
<th>X-Dim (m)</th>
<th>Y-Dim (m)</th>
<th>Rota Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSAP_39</td>
<td>Plant Mobile</td>
<td>AREA</td>
<td>591789.2</td>
<td>4613681.7</td>
<td>1940.1</td>
<td>2.83E-07</td>
<td>5</td>
<td>217.0</td>
<td>563.0</td>
<td>-44</td>
</tr>
</tbody>
</table>

5.4 **Monitored Background Concentrations**

5.4.1 **Hourly Ozone Concentrations from Moxa**

WDEQ/AQD provide monitored hourly ozone data collected at Moxa for years 2008 to 2012, concurrent with the meteorological data, to be used in the Tier 3 modeling analysis. Data for years 2008 to 2011 were provided in parts per million (ppm) concentrations, and in an AERMOD-ready format. The hourly data for 2012 was pulled from WDEQ/AQD's database in parts per billion (ppb) concentrations and required minor processing. All missing data were replaced with a value of 61 ppb, which was the reported H4H 8-hour 3-year mean for this site based on a permit analysis provided by WDEQ/AQD.

The five years were combined together into one data set in ppb concentrations. Reviewing the data, the five-year one-hour mean concentration is 39 ppb, with the maximum measured 1-hour concentration at 99 ppb. Further evaluation revealed that Moxa recorded nearly 1400 hourly readings above 60 ppb, 84 readings above 70 ppb, 16 readings above 80 ppb, and 9 readings above 90 ppb. Based on this analysis, the Moxa monitor appears to be impacted at times by localized sources.
To smooth out the hourly impact spikes, but still retain the seasonal and diurnal distribution of the hourly ozone values, mean seasonal hourly concentrations were calculated over the five-year period for use in the model. The seasonal hour values were calculated by averaging the data by hour and season across the monitoring period (e.g., all five winters for hour 1). These values are presented in Table 5-6. Using seasonal hour averages for background ozone is discussed as a viable method to define background ozone in EPA’s March 2011 memorandum (U.S. EPA, 2011).

Table 5-6
Mean Seasonal\(^{1,2}\) Hour Background Ozone Concentrations for the Moxa Monitoring Station 2008 to 2012

<table>
<thead>
<tr>
<th>Hour</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppb</td>
<td>μg/m(^3)</td>
<td>ppb</td>
<td>μg/m(^3)</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>68.6</td>
<td>40</td>
<td>78.4</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>70.6</td>
<td>39</td>
<td>76.4</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>66.6</td>
<td>38</td>
<td>74.5</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>66.6</td>
<td>38</td>
<td>74.5</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>66.6</td>
<td>37</td>
<td>72.5</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
<td>66.6</td>
<td>36</td>
<td>70.6</td>
</tr>
<tr>
<td>7</td>
<td>34</td>
<td>66.6</td>
<td>36</td>
<td>70.6</td>
</tr>
<tr>
<td>8</td>
<td>33</td>
<td>64.7</td>
<td>37</td>
<td>72.5</td>
</tr>
<tr>
<td>9</td>
<td>34</td>
<td>66.6</td>
<td>40</td>
<td>78.4</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td>68.6</td>
<td>44</td>
<td>86.2</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td>70.6</td>
<td>47</td>
<td>92.1</td>
</tr>
<tr>
<td>12</td>
<td>38</td>
<td>74.5</td>
<td>49</td>
<td>96.0</td>
</tr>
<tr>
<td>13</td>
<td>39</td>
<td>76.4</td>
<td>51</td>
<td>100.0</td>
</tr>
<tr>
<td>14</td>
<td>41</td>
<td>80.4</td>
<td>51</td>
<td>100.0</td>
</tr>
<tr>
<td>15</td>
<td>41</td>
<td>80.4</td>
<td>52</td>
<td>101.9</td>
</tr>
<tr>
<td>16</td>
<td>41</td>
<td>80.4</td>
<td>52</td>
<td>101.9</td>
</tr>
<tr>
<td>17</td>
<td>41</td>
<td>80.4</td>
<td>52</td>
<td>101.9</td>
</tr>
<tr>
<td>18</td>
<td>39</td>
<td>76.4</td>
<td>51</td>
<td>100.0</td>
</tr>
<tr>
<td>19</td>
<td>38</td>
<td>74.5</td>
<td>49</td>
<td>96.0</td>
</tr>
<tr>
<td>20</td>
<td>38</td>
<td>74.5</td>
<td>47</td>
<td>92.1</td>
</tr>
<tr>
<td>21</td>
<td>37</td>
<td>72.5</td>
<td>45</td>
<td>88.2</td>
</tr>
<tr>
<td>22</td>
<td>36</td>
<td>70.6</td>
<td>44</td>
<td>86.2</td>
</tr>
<tr>
<td>23</td>
<td>36</td>
<td>70.6</td>
<td>42</td>
<td>82.3</td>
</tr>
<tr>
<td>24</td>
<td>37</td>
<td>72.5</td>
<td>42</td>
<td>82.3</td>
</tr>
</tbody>
</table>

1. The mean concentration was calculated for each hour and season (e.g., all five winters for each hour were averaged together).
2. Winter is defined as December, January and February; Spring is March, April and May; Summer is June, July and August; and Fall is September, October and November.
5.4.2 Hourly NO₂ Concentration from Moxa

For background 1-hour NO₂, WDEQ/AQD provided a 1-hour value of 22 ppb (41.4 μg/m³) to be used in the analysis. This value also was measured at the Moxa station.

5.5 WAAQS Model Results

Table 5-7 presents the 1-hour NO₂ modeled concentration and monitored background value for comparison to the WAAQS. Compliance with the 1-hour standard is demonstrated at the one receptor identified from the SIL analysis.

Table 5-7
Results of the Modeled Concentrations in Comparison to the WAAQS

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Period</th>
<th>Statistic</th>
<th>Receptor Coordinates NAD83 UTM (m), Zone 12</th>
<th>Concentration (μg/m³)</th>
<th>Modeled</th>
<th>Background</th>
<th>Total</th>
<th>WAAQS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂</td>
<td>1-Hour</td>
<td>Five-Year</td>
<td>597677.3, 4608392.3</td>
<td></td>
<td>70.4</td>
<td>41.4</td>
<td>111.8</td>
<td>188</td>
</tr>
</tbody>
</table>
6.0 Conclusions

An AERMOD modeling analysis was performed for the Westvaco Optimization Project, a proposed minor modification to the Tronox Westvaco plant.

Modeling results demonstrated that Project impacts were above the SILs for 1-hour NO$_2$ at one receptor, and below the SILs for all other pollutants and averaging periods. For the 1-hour NO$_2$ full-impact analysis that included all Westvaco sources as well as regional background sources, the modeling results demonstrated compliance with the 1-hour NO$_2$ WAAQS.

This modeling analysis demonstrates that Tronox Westvaco, as modified by the Westvaco Optimization Project, will comply with all applicable air quality standards.
7.0 References

Appendix A

Model Input Files
Appendix A

Westvaco Optimization Project and Net Emissions Increase Calculations
<table>
<thead>
<tr>
<th>Unit Description</th>
<th>New (N)</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>H2S</th>
<th>HS/HSO4</th>
<th>F</th>
<th>Pb</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly Ash Silo and Truck Loadout Refurbishment</td>
<td>A</td>
<td>0.30</td>
<td>0.36</td>
<td>0.14</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>New Packing in MW Stripping Columns</td>
<td>A</td>
<td>0.30</td>
<td>0.35</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>VFD Installation on Mono I Slurry Pumps</td>
<td>A</td>
<td>0.30</td>
<td>0.35</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Desuperheater 25# Steam to Mono</td>
<td>A</td>
<td>0.30</td>
<td>0.36</td>
<td>0.14</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Drop-out Wash Water Tank Cap. Increase</td>
<td>A</td>
<td>0.30</td>
<td>0.37</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Scale Inhibitor Addition</td>
<td>A</td>
<td>0.30</td>
<td>0.35</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Session 4 Modifications</td>
<td>A</td>
<td>0.30</td>
<td>0.36</td>
<td>0.14</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Post-Project Emissions, Tons

<table>
<thead>
<tr>
<th>PM tons/yr</th>
<th>PM10 tons/yr</th>
<th>PM2.5 tons/yr</th>
<th>SO2 tons/yr</th>
<th>NOx tons/yr</th>
<th>CO tons/yr</th>
<th>VOC tons/yr</th>
<th>H2S tons/yr</th>
<th>HS/HSO4 tons/yr</th>
<th>F tons/yr</th>
<th>Pb tons/yr</th>
<th>CO2e tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>29.5</td>
<td>16.1</td>
<td>6.5</td>
<td>53.4</td>
<td>31.8</td>
<td>2.5</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>68.3</td>
</tr>
</tbody>
</table>

2013-2014 Baseline Emissions (BASE) 201.0 | 190.3 | 105.3 | 0.6 | 247.2 | 53.8 | 11.2 | 3.0 | 0.0 | 0.0 | 374339

Projected Actual Emissions (PAE) 231.0 | 219.0 | 114.6 | 2.5 | 264.4 | 21.8 | 1.2 | 0.5 | 0.0 | 0.0 | 415367

Projected Actual Emissions (PAE) 231.0 | 219.0 | 114.6 | 2.5 | 264.4 | 21.8 | 1.2 | 0.5 | 0.0 | 0.0 | 415367

Excludable Emissions (EE) 21.1 | 20.3 | 10.6 | 0.1 | 16.1 | 5.7 | 1.0 | 0.5 | 0.0 | 0.0 | 23944

Net Project Emission Increase 9.8 | 9.5 | 5.7 | 0.1 | 37.3 | 15.9 | 1.5 | 0.1 | 0.0 | 0.0 | 92888

Significant Emission Rate, Tons 25 | 17 | 10 | 0.4 | 40 | 10 | 10 | 7 | 0.6 | 0.0 | 75000

Westvaco Optimization Project Emission Calculations App A-1
<table>
<thead>
<tr>
<th>Source ID</th>
<th>Description</th>
<th>PM EMISSIONS (tpy)</th>
<th>PM2.5 EMISSIONS (tpy)</th>
<th>PM10 EMISSIONS (tpy)</th>
<th>SO2 EMISSIONS (tpy)</th>
<th>NOx EMISSIONS (tpy)</th>
<th>CO EMISSIONS (tpy)</th>
<th>VOC EMISSIONS (tpy)</th>
<th>H2S EMISSIONS (tpy)</th>
<th>F EMISSIONS (tpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>RTR1</td>
<td>Sesqui #1 Gas-fired Boiler</td>
<td>0.34</td>
<td>0.32</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR2</td>
<td>Sesqui #2 Gas-fired Boiler</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR4</td>
<td>Sesqui Hammermill Crusher Vent</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR5</td>
<td>Mono Loadout Screening Vent</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR6</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR7</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR8</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR9</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR10</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR11</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>RTR12</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR13</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR14</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR15</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR16</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR17</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR18</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR19</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR20</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR21</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>RTR22</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR23</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR24</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR25</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR26</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR27</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR28</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR29</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTR30</td>
<td>Mono Railcar Loadout</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:**PM emissions assumed equal to PM10 for all sources except one stockpile activity.
Caustic Project Emissions

Caustic Project Emissions Increase Using 2013-2014 Baseline Average Emissions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
<th>Project No.</th>
<th>Emission</th>
<th>Modified?</th>
<th>Production Increase, %</th>
<th>PM tons/yr</th>
<th>PM10 tons/yr</th>
<th>PM2.5 tons/yr</th>
<th>SO2 tons/yr</th>
<th>NOx tons/yr</th>
<th>CO tons/yr</th>
<th>VOC tons/yr</th>
<th>H2S tons/yr</th>
<th>H2SO4 tons/yr</th>
<th>F tons/yr</th>
<th>Pb tons/yr</th>
<th>CO2e tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD3</td>
<td>Lime Slaker Silo</td>
<td>All</td>
<td>N</td>
<td>3.67%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.1</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>SM1</td>
<td>Lime Kiln</td>
<td>All</td>
<td>N</td>
<td>3.67%</td>
<td>0.7</td>
<td>0.7</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.1</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Totals</td>
<td>0.7</td>
<td>0.7</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.1</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Utilities Utilization Emissions Increase Using 2013-2014 Baseline Average Emissions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
<th>Project No.</th>
<th>Emission</th>
<th>Modified?</th>
<th>Production Increase, %</th>
<th>PM tons/yr</th>
<th>PM10 tons/yr</th>
<th>PM2.5 tons/yr</th>
<th>SO2 tons/yr</th>
<th>NOx tons/yr</th>
<th>CO tons/yr</th>
<th>VOC tons/yr</th>
<th>H2S tons/yr</th>
<th>H2SO4 tons/yr</th>
<th>F tons/yr</th>
<th>Pb tons/yr</th>
<th>CO2e tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH1A</td>
<td>#1 Gas-Fired Boiler</td>
<td>All</td>
<td>0.09%</td>
<td>0.0</td>
</tr>
<tr>
<td>PH1B</td>
<td>#2 Gas-Fired Boiler</td>
<td>All</td>
<td>0.09%</td>
<td>0.0</td>
</tr>
<tr>
<td>PH2</td>
<td>#3 Gas-Fired Boiler</td>
<td>All</td>
<td>0.09%</td>
<td>0.0</td>
</tr>
<tr>
<td>PH3</td>
<td>#4 Gas-Fired Boiler</td>
<td>All</td>
<td>0.09%</td>
<td>0.0</td>
</tr>
<tr>
<td>MW-5</td>
<td>#8 Gas-Fired Boiler</td>
<td>All</td>
<td>0.09%</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Total Project Emissions Increase using Gas-Fired Steam

<table>
<thead>
<tr>
<th>Emission</th>
<th>PM tons/yr</th>
<th>PM10 tons/yr</th>
<th>PM2.5 tons/yr</th>
<th>SO2 tons/yr</th>
<th>NOx tons/yr</th>
<th>CO tons/yr</th>
<th>VOC tons/yr</th>
<th>H2S tons/yr</th>
<th>H2SO4 tons/yr</th>
<th>F tons/yr</th>
<th>Pb tons/yr</th>
<th>CO2e tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.7</td>
<td>0.7</td>
<td>0.4</td>
<td>0.0</td>
<td>3.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3163</td>
</tr>
</tbody>
</table>

Long Description

Caustic Project Emissions Increase Using 2013-2014 Baseline Average Emissions

- **PM**
- **PM10**
- **PM2.5**
- **SO2**
- **NOx**
- **CO**
- **VOC**
- **H2S**
- **H2SO4**
- **F**
- **Pb**
- **CO2e**

Utilities Utilization Emissions Increase Using 2013-2014 Baseline Average Emissions

- **PM**
- **PM10**
- **PM2.5**
- **SO2**
- **NOx**
- **CO**
- **VOC**
- **H2S**
- **H2SO4**
- **F**
- **Pb**
- **CO2e**

Total Project Emissions Increase using Gas-Fired Steam

- **PM**
- **PM10**
- **PM2.5**
- **SO2**
- **NOx**
- **CO**
- **VOC**
- **H2S**
- **H2SO4**
- **F**
- **Pb**
- **CO2e**

Westvaco Optimization Project Emission Calculations App A-3

Schnauber Consulting, LLC
ELDM Project Emissions

ELDM Production, tons

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELDM</td>
<td>818,247</td>
<td>867,076</td>
<td>843,162</td>
</tr>
</tbody>
</table>

ELDM Steam Usage, Klbs

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELDM</td>
<td>1,564,044</td>
<td>1,721,784</td>
<td>1,643,162</td>
</tr>
</tbody>
</table>

Steam Allocation

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>818,247</td>
<td>843,162</td>
<td>1,643,162</td>
</tr>
</tbody>
</table>

Proposed Modifications

<table>
<thead>
<tr>
<th>Project No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>New Packing in MW Stripping Columns</td>
</tr>
<tr>
<td>2</td>
<td>Preheat MW to Evaporators</td>
</tr>
<tr>
<td>3</td>
<td>Condensate Inversion Around Flash Tank</td>
</tr>
<tr>
<td>4</td>
<td>Fluid Bed Dryer Feed Screw Upgrade</td>
</tr>
<tr>
<td>5</td>
<td>Granger/Westvaco Pipeline - Deca Utilization</td>
</tr>
</tbody>
</table>

Utilities Utilization Emissions Increase Using 2013-2014 Baseline Average Emissions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAIL</td>
<td>Switch Engine Activity</td>
</tr>
</tbody>
</table>

Miscellaneous Emissions Increase Using 2013-2014 Baseline Average Emissions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONO9</td>
<td>Mono Railcar Loadout</td>
</tr>
<tr>
<td>MONO10</td>
<td>Mono Bulk Truck Loadout</td>
</tr>
<tr>
<td>MONO12</td>
<td>Mono Loadout Screening</td>
</tr>
</tbody>
</table>

Production Increase, %

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH-1A</td>
<td>#1 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-1B</td>
<td>#2 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-2</td>
<td>#3 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-3</td>
<td>#4 Gas-Fired Boiler</td>
</tr>
<tr>
<td>MW-5</td>
<td>#6 Gas-Fired Boiler</td>
</tr>
</tbody>
</table>

Utilities Utilization Emissions Increase Using 2013-2014 Baseline Average Emissions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-5</td>
<td>#6 Gas-Fired Boiler</td>
</tr>
</tbody>
</table>

Misc Emission Increase Using 2013-2014 Baseline Average Emissions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONO9</td>
<td>Mono Railcar Loadout</td>
</tr>
<tr>
<td>MONO10</td>
<td>Mono Bulk Truck Loadout</td>
</tr>
<tr>
<td>MONO12</td>
<td>Mono Loadout Screening</td>
</tr>
</tbody>
</table>

Total Project Emissions Increase using Gas-Fired Steam

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH-1A</td>
<td>#1 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-1B</td>
<td>#2 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-2</td>
<td>#3 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-3</td>
<td>#4 Gas-Fired Boiler</td>
</tr>
<tr>
<td>MW-5</td>
<td>#6 Gas-Fired Boiler</td>
</tr>
</tbody>
</table>

Schnauber Consulting, LLC

1 of 1

Westvaco Optimization Project Emission Calculations App A-4
Mono Project Emissions

Proposed Modifications

<table>
<thead>
<tr>
<th>Project No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mono Filter Piping Replacement Phase II</td>
</tr>
<tr>
<td>2</td>
<td>Desuperheater 25# Steam to Mono</td>
</tr>
<tr>
<td>3</td>
<td>Mono II Circ. Pump Replacement Phase I</td>
</tr>
<tr>
<td>4</td>
<td>HE-3501 Heat Exchanger Replacement</td>
</tr>
<tr>
<td>5</td>
<td>VFD Installation on Mono I Slurry Pumps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit Description</th>
<th>Gas-Fired Steam Production</th>
<th>Mono Plant Emissions Increase Using 2013-2014 Baseline Average Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2013</td>
<td>2014</td>
</tr>
<tr>
<td></td>
<td>1.565,199</td>
<td>1,611,668</td>
</tr>
<tr>
<td>Mono Steam Usage, Klbs</td>
<td>3,751,666</td>
<td>3,791,065</td>
</tr>
<tr>
<td>Steam per Ton RSA, Klbs/ton</td>
<td>2.397</td>
<td>2.352</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas-Fired Steam Production</th>
<th>Mono Plant Emissions Increase Using 2013-2014 Baseline Average Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH1A #1 Gas-Fired Boiler, Klbs</td>
<td>120,586</td>
</tr>
<tr>
<td>PH1B #2 Gas-Fired Boiler, Klbs</td>
<td>110,428</td>
</tr>
<tr>
<td>PH2 #3 Gas-Fired Boiler, Klbs</td>
<td>86,465</td>
</tr>
<tr>
<td>PH3 #4 Gas-Fired Boiler, Klbs</td>
<td>182,535</td>
</tr>
<tr>
<td>MW-5 #6 Gas-Fired Boiler, Klbs</td>
<td>309,903</td>
</tr>
</tbody>
</table>

Steam Allocation

Unit Description

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONO6</td>
<td>Mono 1 Fluid Bed Dryer</td>
</tr>
<tr>
<td>MONO9</td>
<td>Mono 1 Fluid Bed Dryer</td>
</tr>
<tr>
<td>MONO10</td>
<td>Mono Bulk Truck Loading</td>
</tr>
<tr>
<td>MONO12</td>
<td>Mono Loadout Screening</td>
</tr>
<tr>
<td>MONO18</td>
<td>Mono 2 Fluid Bed Dryer</td>
</tr>
<tr>
<td>MONOCT</td>
<td>Moto Cooling Tower</td>
</tr>
<tr>
<td>MONO2CT</td>
<td>Moto Cooling Tower</td>
</tr>
</tbody>
</table>

Affected by Projects

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAIL</td>
<td>Switch Engine Activity</td>
</tr>
</tbody>
</table>

Miscellaneous Emissions Increase Using 2013-2014 Baseline Average Emissions

Unit Description

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH-1A</td>
<td>#1 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-1B</td>
<td>#2 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-2</td>
<td>#3 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-3</td>
<td>#4 Gas-Fired Boiler</td>
</tr>
<tr>
<td>MW-5</td>
<td>#6 Gas-Fired Boiler</td>
</tr>
</tbody>
</table>

Affected by Projects

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2S</td>
<td>Production Increase, %</td>
</tr>
</tbody>
</table>

Utilities Utilization Emissions Increase Using 2013-2014 Baseline Average Emissions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH-1A</td>
<td>#1 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-1B</td>
<td>#2 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-2</td>
<td>#3 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-3</td>
<td>#4 Gas-Fired Boiler</td>
</tr>
<tr>
<td>MW-5</td>
<td>#6 Gas-Fired Boiler</td>
</tr>
</tbody>
</table>

Assumptions

Assumes that all feedstock to support the Mono projects will be sourced from the dredge operation and/or ELDM-supplied liquor. Consequently, no ore.
Sesqui Project Emissions

<table>
<thead>
<tr>
<th>Project No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1814, 57, 65 Bin Level System Upgrade</td>
</tr>
<tr>
<td>2</td>
<td>Dual Dissolver Overflow Piping</td>
</tr>
<tr>
<td>3</td>
<td>Floc Addition Improvements</td>
</tr>
<tr>
<td>4</td>
<td>Inlet Performance Improvements</td>
</tr>
<tr>
<td>5</td>
<td>Drop Out Wash Water Tank Cap. Increase</td>
</tr>
</tbody>
</table>

Sesqui Ore Stockpile Wind Erosion

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>Avg</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>H2S</th>
<th>H2SO4</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,378,454</td>
<td>2,473,510</td>
<td>Avg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sesqui Steam Usage, Klbs

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,478</td>
<td>2,476</td>
<td>2,477</td>
</tr>
</tbody>
</table>

Gas-Fired Steam Production 2013-2014

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-5</td>
<td>#5 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH1A</td>
<td>#1 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH1B</td>
<td>#2 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH2A</td>
<td>#3 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH2B</td>
<td>#4 Gas-Fired Boiler</td>
</tr>
</tbody>
</table>

Utilities Utilization Emissions Increase Using 2013-2014 Baseline Average Emissions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAIL</td>
<td>Switch Engine Activity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Methane Emission Reduction</td>
</tr>
<tr>
<td>7</td>
<td>Miscellaneous Emissions Increase Using 2013-2014 Baseline Average Emissions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA-4</td>
<td>Sesqui Hammermill Chopper Vent</td>
</tr>
<tr>
<td>PA-5</td>
<td>Sesqui Plant Ure Screening Vent</td>
</tr>
<tr>
<td>PA-6</td>
<td>Sesqui Plant Dissolver Vent</td>
</tr>
<tr>
<td>PA-7</td>
<td>Sesqui Plant Dissolver Vent</td>
</tr>
<tr>
<td>PA-8</td>
<td>Sesqui Plant Dissolver Vent</td>
</tr>
<tr>
<td>PA-9</td>
<td>Sesqui Plant Dissolver Vent</td>
</tr>
<tr>
<td>RA-1</td>
<td>P-3 Gas-Fired Calcin</td>
</tr>
<tr>
<td>RA-2</td>
<td>M-1 Gas-Fired Calcin</td>
</tr>
<tr>
<td>RA-22A</td>
<td>R-19 Gas-Fired Calcin</td>
</tr>
<tr>
<td>RA-24</td>
<td>M-17 Gas-Fired Calcin</td>
</tr>
<tr>
<td>RA-25</td>
<td>P-5 Sesqui Fluid Bed Calcin</td>
</tr>
<tr>
<td>RA-26</td>
<td>P-6 Sesqui Fluid Bed Calcin</td>
</tr>
<tr>
<td>RA-29</td>
<td>P-2 Sesqui Fluid Bed Calcin</td>
</tr>
<tr>
<td>RA-28</td>
<td>Sesqui Bagging</td>
</tr>
<tr>
<td>RA-33</td>
<td>Sesqui Silo Storage</td>
</tr>
<tr>
<td>SESQUIPILE</td>
<td>Sesqui Ore Stockpile Activity</td>
</tr>
<tr>
<td>SESQOWE</td>
<td>Sesqui Ore Stockpile Wind Erosion</td>
</tr>
<tr>
<td>SESQUILOAD</td>
<td>Sesqui Plant Radian Loading</td>
</tr>
<tr>
<td>SESQUICT</td>
<td>Sesqui Cooling Tower</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Methane Emission Reduction</td>
</tr>
<tr>
<td>9</td>
<td>Miscellaneous Emissions Increase Using 2013-2014 Baseline Average Emissions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH-1A</td>
<td>#1 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-1B</td>
<td>#2 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-2A</td>
<td>#3 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-3</td>
<td>#4 Gas-Fired Boiler</td>
</tr>
<tr>
<td>MW-5</td>
<td>#5 Gas-Fired Boiler</td>
</tr>
</tbody>
</table>

Sesqui Production, tons

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>927,692</td>
<td>938,851</td>
<td>934,327</td>
</tr>
</tbody>
</table>

Sesqui Production Increase, %

<table>
<thead>
<tr>
<th>Year</th>
<th>2014</th>
<th>2013</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>143%</td>
<td>100%</td>
<td>1.43</td>
</tr>
</tbody>
</table>

Sesqui Plant Production Increase, Ktons

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>Avg</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>H2S</th>
<th>H2SO4</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>387,060</td>
<td>377,060</td>
<td>Avg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous Emissions Increase Using 2013-2014 Baseline Average Emissions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAIL</td>
<td>Switch Engine Activity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Miscellaneous Emissions Increase Using 2013-2014 Baseline Average Emissions</td>
</tr>
<tr>
<td>11</td>
<td>Miscellaneous Emissions Increase Using 2013-2014 Baseline Average Emissions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH-1A</td>
<td>#1 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-1B</td>
<td>#2 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-2A</td>
<td>#3 Gas-Fired Boiler</td>
</tr>
<tr>
<td>PH-3</td>
<td>#4 Gas-Fired Boiler</td>
</tr>
<tr>
<td>MW-5</td>
<td>#5 Gas-Fired Boiler</td>
</tr>
</tbody>
</table>

Additional Information

Schnauber Consulting, LLC

Westvaco Optimization Project Emission Calculations App A-6
<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
<th>Emission Unit Modified?</th>
<th>Production Increase, %</th>
<th>PM tons/yr</th>
<th>PM10 tons/yr</th>
<th>PM2.5 tons/yr</th>
<th>SO2 tons/yr</th>
<th>NOx tons/yr</th>
<th>CO tons/yr</th>
<th>VOC tons/yr</th>
<th>H2S tons/yr</th>
<th>H2SO4 tons/yr</th>
<th>F tons/yr</th>
<th>Pb tons/yr</th>
<th>CO2e tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-10</td>
<td>Fly Ash Silo</td>
<td>All</td>
<td>Y</td>
<td>100.0%</td>
<td>0.30</td>
<td>0.30</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS-11</td>
<td>Fly Ash Truck Loading</td>
<td>All</td>
<td>Y</td>
<td>100.0%</td>
<td>0.30</td>
<td>0.30</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>0.6</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Project Emissions Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM tons/yr</td>
</tr>
<tr>
<td>0.6</td>
</tr>
</tbody>
</table>
TRONOX-WESTVACO

ELDM Demand Growth Emissions

4/9/2015

2013 2014 Avg

ELDM Production, tons 819,247 887,076 843,162

ELDM Steam Usage, Kibs 1,564,043 1,721,784 Avg

Steam per Ton RSA, Kibs/ton 1.809 1.886 1.949

Highest 2014 3 month annualized, Ktons 977.0

Baseline production, Ktons 843.2

Demand Growth, Ktons 133.8

Prod. Increase from Demand Growth, % 15.87%

Add. Steam Req’d, Klbs 260,716

Steam per Ton RSA, % Inc. 1.00

Coal-Fired Steam Production 2013 2014 Avg Fraction Kibs % Inc.

MW1 ELDL Lime Silo All N 15.87% 0.1 0.1 0.1

MW2 ELDL Per-lite Precoat Silo All N 15.87% 0.0 0.0 0.0

MW3 ELDL Fluid Bed Dryer All N 15.87% 4.4 4.4 2.5

MW4 Mine Water Housekeeping All N 15.87% 0.4 0.4 0.2

MW6 HS5 Scrubber/CO2 Separating System All N 15.87% 0.5 5843

MW7 LWP HS5 Vent All N 15.87% 0.1

MCON01 Mine Railcar Loadout All N 5.74% 0.2 0.2 0.1

MCON02 Mine Bulk Truck Loadout All N 5.74% 0.4 0.4 0.2

MCON12 Mine Loadout Screening All N 5.74% 0.4 0.4 0.2

Total 6.0 6.0 3.1 0.0 0.0 0.1 0.5 0.0 0.0 0.0 0.0 5843

Utilities Utilization Emissions Increase Using 2013-2014 Baseline Average Emissions

Unit Description Affected by Projects Production Increase, % PM tons/yr PM10 tons/yr PM2.5 tons/yr SO2 tons/yr NOx tons/yr CO tons/yr VOC tons/yr H2S tons/yr H2SO4 tons/yr F tons/yr Pb tons/yr CO2e tons/yr

PH-1A #1 Gas-Fired Boiler All A 2.55% 0.0 0.0 0.0 0.01 0.4 0.1 0.0

PH-1B #2 Gas-Fired Boiler All A 2.55% 0.0 0.0 0.0 0.01 0.4 0.1 0.0

PH-2 #3 Gas-Fired Boiler All A 2.55% 0.0 0.0 0.0 0.002 0.5 0.3 0.0

PH-3 #4 Gas-Fired Boiler All A 2.55% 0.1 0.1 0.1 0.004 0.4 0.3 0.0

MW-5 #6 Gas-Fired Boiler All A 2.55% 0.1 0.1 0.1 0.004 0.4 0.3 0.0

Total 4.0 4.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7652

Total ELDL Demand Growth Emissions Increase Using 2013-2014 Baseline Average Emissions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
<th>Affected by Projects</th>
<th>Production Increase, %</th>
<th>PM tons/yr</th>
<th>PM10 tons/yr</th>
<th>PM2.5 tons/yr</th>
<th>SO2 tons/yr</th>
<th>NOx tons/yr</th>
<th>CO tons/yr</th>
<th>VOC tons/yr</th>
<th>H2S tons/yr</th>
<th>H2SO4 tons/yr</th>
<th>F tons/yr</th>
<th>Pb tons/yr</th>
<th>CO2e tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW1</td>
<td>ELDL Lime Silo</td>
<td>All</td>
<td>15.87%</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW2</td>
<td>ELDL Per-lite Precoat Silo</td>
<td>All</td>
<td>15.87%</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW3</td>
<td>ELDL Fluid Bed Dryer</td>
<td>All</td>
<td>15.87%</td>
<td>4.4</td>
<td>4.4</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW4</td>
<td>Mine Water Housekeeping</td>
<td>All</td>
<td>15.87%</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW6</td>
<td>HS5 Scrubber/CO2 Separating System</td>
<td>All</td>
<td>15.87%</td>
<td>0.5</td>
<td>5843</td>
<td></td>
</tr>
<tr>
<td>MW7</td>
<td>LWP HS5 Vent</td>
<td>All</td>
<td>15.87%</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>MCON01</td>
<td>Mine Railcar Loadout</td>
<td>All</td>
<td>5.74%</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCON02</td>
<td>Mine Bulk Truck Loadout</td>
<td>All</td>
<td>5.74%</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCON12</td>
<td>Mine Loadout Screening</td>
<td>All</td>
<td>5.74%</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 6.0 6.0 3.1 0.0 0.0 0.1 0.5 0.0 0.0 0.0 0.0 5843

Schnauber Consulting, LLC

1 of 1

Westvaco Optimization Project Emission Calculations App A-8
TRONOX-WESTVACO

Mono Demand Growth Emissions

4/9/2015

2013 2014 Avg
Mono Production, tons 1,561,199 1,611,668 1,588,434

Highest 2014 3-month annualized, Ktons 1,743.4
Baseline production, Ktons 1,568.4
Demand Growth, Ktons 165.0
Prod. Increase from Demand Growth, % 9.76%

Mono Steam Usage, Kibs 3,751,665 3,791,065 3,771,056
Steam per Ton RSA, Kibs/ton 2,397 2,352 2,374

Add. Steam Req'd, Klbs 367,932

Baseline production, Ktons 1,588.4
Demand Growth, Ktons 155.0
3,751,665 3,791,065 3,771,056
PM PM10 PM2.5 SO2 NOx CO VOC H2S H2SO4 F Pb CO2e

2013 2014 Avg Fraction Klbs % Inc.

NS-1A #6 Coal Boiler, Klbs 120,586 65,153 92,870 0.01 3,339 3.60%
NS-1B #7 Coal Boiler, Klbs 114,386 62,970 83,144 0.01 3,344 3.69%
MONO10 Mono Bulk Truck Loadout 4,578,199 5,007,911 4,793,055 0.47 172,353 3.60%
MONO12 Mono Loadout Screening 3,917,184 4,686,861 4,702,023 0.46 169,079 3.60%

Total 10,232,018 1.00

Coal-Fired Steam Production 2013 2014 Avg Fraction Klbs % Inc.

PM PM10 PM2.5 SO2 NOx CO VOC H2S H2SO4 F Pb CO2e

4.6 4.6 2.1 0.0 4.9 1.6 0.3 0.0 0.0 0.0 0.0 2443

Steam utilization emissions were based on all boilers supplying
steam in the same proportion as it was produced during the
baseline period. The coal boiler data in shaded font is used to
determine the remaining steam demand placed on the gas
boilers to meet demand growth production.
Sesqui Demand Growth Emissions

2013, 2014, Avg

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sesqui Production, tons/yr</td>
<td>938,900</td>
<td>998,861</td>
<td>979,367</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sesqui Steam Usage, Klbs</td>
<td>2,374,453</td>
<td>2,473,510</td>
</tr>
<tr>
<td>Steam per Ton RSA, Klbs</td>
<td>2.474</td>
<td>2.476</td>
</tr>
</tbody>
</table>

Coal-Fired Steam Production

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Klbs</td>
<td>% Inc.</td>
<td></td>
</tr>
<tr>
<td>PH1A #1 Gas-Fired Boiler, Klbs</td>
<td>130,546</td>
<td>85,153</td>
<td>92,870</td>
</tr>
<tr>
<td>PH1B #2 Gas-Fired Boiler, Klbs</td>
<td>110,426</td>
<td>96,346</td>
<td>83,387</td>
</tr>
<tr>
<td>PH1M #3 Gas-Fired Boiler, Klbs</td>
<td>86,461</td>
<td>41,935</td>
<td>83,834</td>
</tr>
<tr>
<td>PH3 #4 Gas-Fired Boiler, Klbs</td>
<td>182,505</td>
<td>137,039</td>
<td>159,787</td>
</tr>
<tr>
<td>MW-5 #8 Gas-Fired Boiler, Klbs</td>
<td>309,903</td>
<td>364,225</td>
<td>277,056</td>
</tr>
</tbody>
</table>

SESQUIPILE

SESQUI-CT

RA-23A&B

RA-24

RA-25

RA-26

RA-28

RA-33

SESQUIPILE

SESQWE

SESQUAL

SESQULA

SESQUAL

Mechanical and Electrical

Miscellaneous Emissions

Production Increase

Utilities Utilization Emissions Increase Using 2013-2014 Baseline Emissions

Total Sesqui Demand Growth Emissions Increase
2014 Monthly Production Data

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Annualized High 3-mo. Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELDM Production, Tons</td>
<td>70150</td>
<td>60760</td>
<td>65445</td>
<td>80477</td>
<td>68656</td>
<td>72239</td>
<td>67094</td>
<td>80759</td>
<td>69158</td>
<td>74454</td>
<td>74879</td>
<td>83005</td>
<td>976964</td>
</tr>
<tr>
<td>Mono Production, Tons</td>
<td>137581</td>
<td>129024</td>
<td>146024</td>
<td>138093</td>
<td>133513</td>
<td>132506</td>
<td>142648</td>
<td>135441</td>
<td>102510</td>
<td>130462</td>
<td>147178</td>
<td>136688</td>
<td>1743400</td>
</tr>
<tr>
<td>Sesqui Production, Tons</td>
<td>80493</td>
<td>72993</td>
<td>85434</td>
<td>78085</td>
<td>86838</td>
<td>84640</td>
<td>84215</td>
<td>92329</td>
<td>81649</td>
<td>80555</td>
<td>81829</td>
<td>89791</td>
<td>1075832</td>
</tr>
</tbody>
</table>
Appendix B

Best Available Control Technology Supporting Information
<table>
<thead>
<tr>
<th>RBLC ID</th>
<th>Company Name</th>
<th>Facility Name</th>
<th>State</th>
<th>Permit No.</th>
<th>Issue Date</th>
<th>Process Name</th>
<th>Control Type</th>
<th>PM10/PM2.5 gr/dscf</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-0149</td>
<td>Klausner Holding USA, Inc</td>
<td>same</td>
<td>SC</td>
<td>1860-0128-CA</td>
<td>20130103</td>
<td>Fly Ash Storage Silo</td>
<td>Baghouse</td>
<td>0.005</td>
</tr>
<tr>
<td>IA-0099</td>
<td>Univ of Northern IA</td>
<td>Power Plant</td>
<td>IA</td>
<td>11-021</td>
<td>20110817</td>
<td>Ash Handling</td>
<td>Baghouse</td>
<td>0.005</td>
</tr>
<tr>
<td>KY-0100</td>
<td>E. Kentucky Power Cooperative</td>
<td>Smith Generating Station</td>
<td>KY</td>
<td>V-05-070 R3</td>
<td>20100409</td>
<td>Ash Handling</td>
<td>Baghouse</td>
<td>0.005</td>
</tr>
<tr>
<td>OH-0317</td>
<td>Ohio River Clean Fuels, LLC</td>
<td>same</td>
<td>OH</td>
<td>02-22896</td>
<td>20081120</td>
<td>Fly Ash Handling</td>
<td>Baghouse</td>
<td>0.005</td>
</tr>
<tr>
<td>IA-0089</td>
<td>Homeland Solutions, LLC</td>
<td>same</td>
<td>IA</td>
<td>06-672</td>
<td>20070808</td>
<td>Ash Storage/Handling</td>
<td>Baghouse</td>
<td>0.005</td>
</tr>
<tr>
<td>IA-0086</td>
<td>Univ of Northern IA</td>
<td>same</td>
<td>IA</td>
<td>02-111</td>
<td>20070503</td>
<td>Ash Conveying #4</td>
<td>Baghouse</td>
<td>0.005</td>
</tr>
<tr>
<td>IA-0086</td>
<td>Univ of Northern IA</td>
<td>same</td>
<td>IA</td>
<td>02-111</td>
<td>20070503</td>
<td>Ash Silo</td>
<td>Baghouse</td>
<td>0.005</td>
</tr>
<tr>
<td>WV-0024</td>
<td>Western Greenbrier Co-Gen, LLC</td>
<td>same</td>
<td>WV</td>
<td>R14-0028</td>
<td>20060426</td>
<td>Ash Handling</td>
<td>Baghouse</td>
<td>0.010</td>
</tr>
<tr>
<td>CO-0057</td>
<td>PSC of Colorado</td>
<td>Comanche Station</td>
<td>CO</td>
<td>UNITPB1015</td>
<td>20050705</td>
<td>Recycle Ash Handling</td>
<td>Baghouse</td>
<td>0.010</td>
</tr>
</tbody>
</table>
Determination of NS-10, NS-11 Emission Limits

The Project PM$_{10}$/PM$_{2.5}$ emissions for each unit were calculated based on PTE as being equivalent to the allowable emission. The BACT analysis in Section 5 indicated a PM emission rate of 0.005 gr/dscf. The original design air flows for the baghouse collection systems were 1600 dscfm per unit; it is assumed that the air flow requirements will remain the same.

For purposes of this application, all of the particulate emissions from NS-10 and NS-11 are assumed to be filterable and \leq PM$_{10}$. An estimate was made as to the fraction of filterable PM$_{2.5}$ to the total filterable PM in the ESP fly ash which will be handled by the units by using AP42 Ch.1, Sec. 1: *Bituminous and Subbituminous Coal Combustion*, Table 1.1-6, which estimates that the fraction of particulate \leq PM$_{2.5}$ is 29% of the total PM:

<table>
<thead>
<tr>
<th>Particle Size (µm)</th>
<th>Cumulative Mass % ≤ Stated Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uncontrolled</td>
</tr>
<tr>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>6</td>
</tr>
<tr>
<td>1.25</td>
<td>2</td>
</tr>
<tr>
<td>1.00</td>
<td>2</td>
</tr>
<tr>
<td>0.625</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>

AP42 Appendix B.2, *Generalized Particle Size Distributions*, Table B.2-3, ‘Typical Collection Efficiencies of Various Particulate Control Devices’ was then used to estimate the PM$_{2.5}$ collection efficiency of a ‘fabric filter’:

<table>
<thead>
<tr>
<th>AIRS Code</th>
<th>Type Of Collector</th>
<th>Particle Size (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>016</td>
<td>Fabric filter - high temperature</td>
<td>99</td>
</tr>
<tr>
<td>017</td>
<td>Fabric filter - mid temperature</td>
<td>99</td>
</tr>
<tr>
<td>018</td>
<td>Fabric filter - low temperature</td>
<td>99</td>
</tr>
</tbody>
</table>
If one assumes that 29% of the PM entering the baghouse is PM$_{2.5}$ and the relative removal efficiencies of 99.5% for particulate >PM$_{2.5}$ and 99% removal of ≤ PM$_{2.5}$, the following estimate can be made. Using a theoretical uncontrolled process emission of 100 lb into the baghouse:

$\text{>PM}_{2.5} = 71 \text{ lbs}$
$\text{PM}_{2.5} = 29 \text{ lbs}$

Using the removal efficiencies from Table B.2-3:

$\text{>PM}_{2.5}$, lbs emitted = $71 \times (1-0.995)$
= 0.36 lb

$\text{PM}_{2.5}$, lbs emitted = $29 \times (1-0.990)$
= 0.29 lb

Total PM emission of 0.65 lb

One can then estimate the filterable PM$_{2.5}$ fraction to total PM emitted:

$0.29 \text{ lb} + 0.65 \text{ lb} = 0.45$, or 45% of filterable PM is PM$_{2.5}$

The proposed allowable filterable PM emission rates for NS-10 and NS-11 are calculated as follows:

$\text{PM, lb/hr} = 0.005 \text{ gr/dscf} \times 1600 \text{ dscfm} + 7000 \text{ gr/lb} \times 60 \text{ min/hr}$
$\text{PM, lb/hr} = 0.069 \text{ lb/hr}$

$\text{PM}_{2.5}, \text{ lb/hr} = 0.069 \text{ lb/hr} \times 0.45$
$\text{PM}_{2.5}, \text{ lb/hr} = 0.031 \text{ lb/hr}$

Finally, the NS-10 and NS-11 project emissions are calculated:

$\text{PM, tons} = 0.069 \text{ lb/hr} \times 8760 \text{ hr/yr} + 2000 \text{ lb/ton}$
$\text{PM, tons} = 0.30$

$\text{PM}_{2.5, \text{ tons}} = 0.031 \text{ lb/hr} \times 8760 \text{ hr/yr} + 2000 \text{ lb/ton}$
$\text{PM}_{2.5, \text{ tons}} = 0.14$
If I am claiming any information in this submission is a trade secret, I hereby swear or affirm that the trade secret request meets the requirements of Wyoming Air Quality Standards and Regulations and that the justification submitted with the trade secret request sets forth the basis for claiming that the information should be considered a trade secret as defined in Wyoming Air Quality Standards and Regulations.

a) I am a Responsible Official as defined in applicable Wyoming Air Quality Standards and Regulations; and
b) Based on information and belief formed after reasonable inquiry, I hereby affirm that all factual statements in this transmittal are true, accurate and complete to the best of my knowledge and that all judgments and estimates have been made in good faith.

Account: Fredva57
Date/time submitted: Jun 19 2015, 08:50:41
NSR Application

Correction to application number: A0000713
Reason for correction: Submittal of Addendum 1

Purpose of Application

Please summarize the reason this permit is being applied for.

TRONOX proposes to modify equipment in three (3) of its Westvaco facility processing plants: ELDM, Mono, and Sesqui. The modifications will increase utilization of existing non-modified equipment in each of the plants for an anticipated production increase of 109K tons per year of refined soda ash. TRONOX also proposes to recommission two small fly ash handling emission units and to modify the Caustic operation for a slight increase in caustic soda production.

Has the facility changed location or is it a new/greenfield facility? No
Does production at this facility contain H2S? Yes
Has the Division been contacted regarding this application? Yes

Federal Rules Applicability - Facility Level

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.
Not affected

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.
Not affected

Trade Secret Information - One or more Emissions Units in this application contains trade secret information.
No

Permit Application Contact - Newly created contacts and application contact changes will be saved when the application is saved.

<table>
<thead>
<tr>
<th>Michael Wendorf</th>
<th>Partner, Schnauber Consulting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Title</td>
</tr>
<tr>
<td>508 Independence Circle</td>
<td>Rock Springs, WY</td>
</tr>
<tr>
<td>Street Address</td>
<td>City/Township, State</td>
</tr>
<tr>
<td>(307)382-5555</td>
<td>wendorf@wyoming.com</td>
</tr>
<tr>
<td>Phone</td>
<td>Fax</td>
</tr>
<tr>
<td></td>
<td>E-mail</td>
</tr>
</tbody>
</table>

Modeling Section

Ambient Air Quality Impact Analysis: WAQSR Chapter 6, Section 2(c)(ii) requires that permit applicants demonstrate that a proposed facility will not prevent the attainment or maintenance of any ambient air quality standard.

Has the applicant contacted AQD to determine if modeling is required? Yes
Is a modeling analysis part of this application? Yes

Application Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349 Page 1 NSR Application - A0001209
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Process Flow Diagram</th>
<th>Westvaco Process Flow Diagrams</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Emissions Calculations</td>
<td>Westvaco Project Emission Calculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cover Letter/Project Description</td>
<td>TRONOX Westvaco Project Description</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modeling Analysis</td>
<td>Westvaco Modeling Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hard Copy Application</td>
<td>TRONOX Westvaco Optimization Project</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Type of Demonstration</td>
<td>Addendum 1</td>
</tr>
</tbody>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: BOL002
AQD EU description: Sesqui #1 Gas-Fired Boiler
PH-1A Sesqui Gas Fired Boiler

Company EU ID: PH-1A
Company EU Description: Sesqui No.1 Gas Fired Boiler

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased steam utilization.

- **Emission Unit Type Specific Information**

 Emission Unit Type: Boiler
 Boiler Type: Other
 Btu Content: 1,049.00 Units: Btu/scf
 Fuel Sulfur Content: 0.00 Units: %
 Fuel Ash Content (%): 0.000
 Type of Service: Industrial

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE)*</td>
<td>Units*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl...
chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

<table>
<thead>
<tr>
<th>Part 63 NESHAP Subpart</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDDDD - Industrial, Commercial, and Institutional Boilers and Process Heaters</td>
</tr>
</tbody>
</table>

Prevention of Significant Deterioration (PSD)

Not Affected

These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review

Not Affected

These rules are found under WAQSR Chapter 6, Section 13.

Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: BOL003
AQD EU description: PH-1B Sesqui Gas Fired Boiler
Company EU ID: PH-1B
Company EU Description: PH-1B No.2 Sesqui Gas Fired Boiler

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased steam utilization.

- Emission Unit Type Specific Information

 Emission Unit Type: Boiler
 Boiler Type: Other
 Btu Content: 1,049.00 Units: Btu/scf
 Fuel Sulfur Content: 0.00 Units: %
 Fuel Ash Content (%): 0.000

- Potential Operating Schedule – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- Emissions Information “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

Pollutant	Pre-Controlled Potential Emissions (tons/yr)	Efficiency Standards	Potential to Emit (PTE)*	Potential to Emit (PTE) (lbs/hr)*	Potential to Emit (PTE) (tons/yr)*	Basis for Determination*
Particulate emissions (PE/PM) (formerly particulate matter, PM)	0	0	0	0	0	
PM # 10 microns in diameter (PE/PM10)	0	0	0	0	0	

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

<table>
<thead>
<tr>
<th>Part 63 NESHAP Subpart</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDDDD - Industrial, Commercial, and Institutional Boilers and Process Heaters</td>
</tr>
</tbody>
</table>

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349
Page 8
NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

AQD EU ID: BOL004
AQD EU description: PH-2 Sesqui Gas Fired Boiler

Company EU ID: PH-2
Company EU Description: PH-2 No. 3 Sesqui Gas Fired Boiler

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased steam utilization.

- **Emission Unit Type Specific Information**

 Emission Unit Type: Boiler

 Boiler Type: Other

 Btu Content: 1,049.00
 Units: Btu/scf

 Fuel Sulfur Content: 0.00
 Units: %

 Fuel Ash Content (%): 0.000
 Type of Service: Industrial

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE)*</td>
<td>Units*</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td>--------</td>
<td>----------------------------------</td>
<td>------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.
Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 Not affected

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

<table>
<thead>
<tr>
<th>Part 63 NESHAP Subpart</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDDDD - Industrial, Commercial, and Institutional Boilers and Process Heaters</td>
</tr>
</tbody>
</table>

Prevention of Significant Deterioration (PSD)
Not Affected
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Section II - Specific Air Contaminant Source Information

AQD EU ID: BOL005
AQD EU description: PH-3 Sesqui Gas Fired Boiler
Company EU ID: PH-3
Company EU Description: PH-3 No. 4 Sesqui Gas Fired Boiler

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased steam utilization.

- **Emission Unit Type Specific Information**

 Emission Unit Type: Boiler

 Boiler Type: Other

 Btu Content: 1,049.00 Units: Btu/scf

 Fuel Sulfur Content: 0.00 Units: %

 Fuel Ash Content (%): 0.000 Type of Service: Industrial

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:

 - **Manufacturer Data**
 - **Test results for this source**
 - **Similar source test results**
 - **GRI/Calc**
 - **Tanks Program**
 - **AP-42**
 - **Other. If this is selected, attach a document with a description of the method used.**

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Efficiency Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE)</td>
<td>Potential to Emit (PTE)</td>
<td>Potential to Emit (PTE)</td>
<td>Basis for Determination</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)</th>
<th>Potential to Emit (PTE)</th>
<th>Potential to Emit (PTE)</th>
<th>Basis for Determination</th>
</tr>
</thead>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)</th>
<th>Potential to Emit (PTE)</th>
<th>Potential to Emit (PTE)</th>
<th>Basis for Determination</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 Not affected

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 Not affected

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

<table>
<thead>
<tr>
<th>Part 63 NESHAP Subpart</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDDDDD - Industrial, Commercial, and Institutional Boilers and Process Heaters</td>
</tr>
</tbody>
</table>

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349
Page 14
NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased steam utilization.

- Emission Unit Type Specific Information

 Emission Unit Type: Boiler

 Boiler Type: Other

 Btu Content: 1,049.00

 Fuel Sulfur Content: 0.00

 Fuel Ash Content (%): 0.000

- Potential Operating Schedule – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- Emissions Information “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:

 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRI Calc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPS) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.
Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**
 - Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**
 - Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 Not affected

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 Not affected

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl...
chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

<table>
<thead>
<tr>
<th>Part 63 NESHAP Subpart</th>
<th>Subject to subpart</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDDDDD – Industrial, Commercial, and Institutional Boilers and Process Heaters</td>
<td></td>
</tr>
</tbody>
</table>

Prevention of Significant Deterioration (PSD)

These rules are found under WAQSR Chapter 6, Section 4. Not Affected

Non-Attainment New Source Review

These rules are found under WAQSR Chapter 6, Section 13. Not Affected

- **Emission Unit Attachments**

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: CKD001
AQD EU description: RA-1 Baby Sesqui Calciner
Company EU ID: RA-1
Company EU Description: RA-1 Baby Sesqui Calciner

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace

 Btu Content: 1,049.00

 Fuel Sulfur Content: 0.00

 Type of Material Processed: Other

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:

 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE)</td>
<td>Potential to Emit (PTE)</td>
<td>Basis for Determination</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)</th>
<th>Potential to Emit (PTE)</th>
<th>Basis for Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)</th>
<th>Potential to Emit (PTE)</th>
<th>Basis for Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349 Page 20 NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 - Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 - Btu Content: 1,049.00

 - Fuel Sulfur Content: 0.00
 - Type of Material Processed: Other

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 - Hours/day: 24
 - Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:
- Manufacturer Data
- Test results for this source
- Similar source test results
- GRICalc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM # 2.5 microns in</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) (tons/yr)</th>
<th>Basis for Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) (tons/yr)</th>
<th>Basis for Determination</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

** Best Available Control Technology (BACT)**

- Was a BACT Analysis completed for this unit? No

** Lowest Achievable Emission Rate (LAER)**

- Was a LAER Analysis completed for this unit? No

** Federal and State Rule Applicability**

- **New Source Performance Standards (NSPS)**

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 Not affected

- **National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)**

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Not affected

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Not Affected

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

Not Affected

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349
Page 23
NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

AQD EU ID: CKD004
AQD EU description: RA-24 Sesqui Gas-Fired Calciner R-15
Company EU ID: RA-24
Company EU Description: RA-24 Sesqui Gas-Fired Calciner R-15

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace

 Btu Content: 1,049.00 Units: Btu/scf

 Fuel Sulfur Content: 0.00 Units: %

 Type of Material Processed: Other

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:

 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS) **Not affected**

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) **Not affected**

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63. Not affected

Prevention of Significant Deterioration (PSD) These rules are found under WAQSR Chapter 6, Section 4. Not Affected

Non-Attainment New Source Review These rules are found under WAQSR Chapter 6, Section 13. Not Affected

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349 Page 26 NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace

 Btu Content: 0.01

 Units: Btu/scf

 Fuel Sulfur Content: 0.00

 Units: %

 Type of Material Processed: Other

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:

 - **Manufacturer Data**
 - **Test results for this source**
 - **Similar source test results**
 - **GRICalc**
 - **Tanks Program**
 - **AP-42**
 - **Other. If this is selected, attach a document with a description of the method used.**

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Emissions (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE)</td>
<td>Standards Potential to Emit (PTE)</td>
<td>Potential to Emit (PTE) Basis for Determination</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)

 Not affected

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

 Not affected

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349 Page 29 NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

AQD EU ID: CKD006
AQD EU description: Sesqui Fluid Bed Calciner R-6
Company EU ID: RA-26
Company EU Description: R-6 Sesqui fluid bed calciner (RA-26)

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other
 Please explain:
 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Btu Content: 0.01
 Units: Btu/scf
 Fuel Sulfur Content: 0.00
 Units: %
 Type of Material Processed: Other

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 - Hours/day: 24
 - Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

** Best Available Control Technology (BACT)

Was a BACT Analysis completed for this unit? **No**

** Lowest Achievable Emission Rate (LAER)

Was a LAER Analysis completed for this unit? **No**

** Federal and State Rule Applicability

New Source Performance Standards (NSPS)

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources. Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride.) Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Not affected
Not Affected
Not Affected
Section II - Specific Air Contaminant Source Information

AQD EU ID: CKD007
AQD EU description: Sesqui Fluid Bed Calciner R-2
RA-29 R-2 Sesqui Fluid Bed Calciner (RA-29)

Company EU ID: RA-29
Company EU Description: RA-29 R-2 Sesqui Fluid Bed Calciner

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Btu Content: 0.01
 Units: Btu/scf
 Fuel Sulfur Content: 0.00
 Units: %
 Type of Material Processed: Other

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRI/Calc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(formerly particulate matter, PM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Potential to Emit (PTE) (tons/yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**
 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**
 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 Not affected

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 Not affected

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Section II - Specific Air Contaminant Source Information

AQD EU ID: CKD009
AQD EU description: Mono 1 Fluid Bed Dryer
Company EU ID: Mono-6
Company EU Description: Mono 1 fluid bed dryer

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Btu Content: 0.01
 Units: Btu/scf
 Fuel Sulfur Content: 0.00
 Units: %
 Type of Material Processed: Other

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE)*</td>
<td>Units*</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
<td>--------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>diameter (PE/PM2.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- Best Available Control Technology (BACT)

 Was a BACT Analysis completed for this unit? No

- Lowest Achievable Emission Rate (LAER)

 Was a LAER Analysis completed for this unit? No

- Federal and State Rule Applicability

New Source Performance Standards (NSPS) Not affected

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) Not affected

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. These include asbestos, benzene, beryllium, mercury, and vinyl chloride.
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Not affected

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Not Affected

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

Not Affected

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: CKD011
AQD EU description: NS-6 Mono 2 Fluid Bed Dryer
Company EU ID: NS-6
Company EU Description: NS-6 Mono 2 Fluid Bed Dryer

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Btu Content: 0.01 Units: Btu/scf
 Fuel Sulfur Content: 0.00 Units: %
 Type of Material Processed: Other

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:

- Manufacturer Data
- Test results for this source
- Similar source test results
- GRICalc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants :

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant Category</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE)*</td>
<td>Units*</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>---</td>
<td>--------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Greenhouse Gases (GHGs):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollutant Category</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE)*</td>
<td>Units*</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
<td></td>
</tr>
</tbody>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 Not affected

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 Not affected

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349
Page 41
NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Btu Content: 0.01 Units: Btu/scf
 Fuel Sulfur Content: 0.00 Units: %
 Type of Material Processed: Other

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Efficieny Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollutant Category</td>
<td>Potential to Emit (PTE)*</td>
<td>Units*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Efficieny Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollutant Category</td>
<td>Potential to Emit (PTE)*</td>
</tr>
<tr>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
</tr>
</tbody>
</table>
| Greenhouse Gases (GHGs):

** Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

* Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Efficieny Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollutant Category</td>
<td>Potential to Emit (PTE)*</td>
</tr>
<tr>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
</tr>
</tbody>
</table>

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Efficieny Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollutant Category</td>
<td>Potential to Emit (PTE)*</td>
</tr>
<tr>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
</tr>
</tbody>
</table>

 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349 Page 44 NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

AQD EU ID: CKD013
AQD EU description: SM-1 Gas Fired Lime Kiln
Company EU ID: SM-1
Company EU Description: SM-1 Gas Fired Lime Kiln

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace

 Btu Content: 1,049.00 Units: Btu/scf

 Fuel Sulfur Content: 0.00 Units: %

 Type of Material Processed: Calcium Carbonate

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)* Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(formerly particulate matter, PM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Standards Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Standards Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

Best Available Control Technology (BACT)

Was a BACT Analysis completed for this unit? No

Lowest Achievable Emission Rate (LAER)

Was a LAER Analysis completed for this unit? No

Federal and State Rule Applicability

** New Source Performance Standards (NSPS) Not affected

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

** National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) Not affected

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

<table>
<thead>
<tr>
<th>Part 63 NESHAP Subpart</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAA – Lime Manufacturing Plants</td>
</tr>
</tbody>
</table>

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4. Not Affected

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13. Not Affected

Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349
Page 47
NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace

 Btu Content: 1,049.00
 Units: Btu/scf

 Fuel Sulfur Content: 0.00
 Units: %

 Type of Material Processed: Other

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential to Emit (PTE) (tons/yr)</th>
<th>Efficiency Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>diameter (PE/PM2.5)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential to Emit (PTE) (tons/yr)</th>
<th>Efficiency Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.
 Not affected

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- **Emission Unit Attachments**

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Section II - Specific Air Contaminant Source Information

AQD EU ID: CSH001
AQD EU description: PA-4 Sesqui Plant Hammermill Crusher Vent
Company EU ID: PA-4
Company EU Description: PA-4 Sesqui Plant Hammermill Crusher Vent

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Crushing/Screening/Handling
 Unit Type: Material Handling
 Number of Conveyor transfer and drop points: 4
 Type of Material being Transferred: Trona ore

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants :

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Efficiency Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride.)

 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349 Page 53 NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

AQD EU ID: CSH002
AQD EU description: PA-5 Sesqui Plant Ore Screening Vent
Company EU ID: PA-5
Company EU Description: PA-5 Sesqui Plant Ore Screening Vent

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:
 Increased process utilization

- **Emission Unit Type Specific Information**

 - **Emission Unit Type:** Crushing/Screening/Handling
 - **Unit Type:** Screening
 - **Screen:** Dry Screen
 - **Screen Type:** Vibrating
 - **Type of Material Screened:** Trona ore
 - **Manufacture Date:**
 - **Power Source:** Line Power
 - **Operating in Conjunction with a Crusher:** Yes
 - **Max Screening Capacity (tons/hr):** 360

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349 Page 54 NSR Application - A0001209
Potential to Emit (PTE)\(^*\)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential to Emit (PTE) (^*)</th>
<th>Units (^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) (^) Units (^)</th>
<th>Potential to Emit (PTE) (^*) (tons/yr)</th>
<th>Basis for Determination (^*)</th>
</tr>
</thead>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) (^) Units (^)</th>
<th>Potential to Emit (PTE) (^*) (tons/yr)</th>
<th>Basis for Determination (^*)</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)

 New Source Performance Standards are listed under 40 Not affected
CFR 60 - Standards of Performance for New Stationary Sources.

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Not affected

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Not Affected

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

Not Affected

Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349
Page 56
NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

AQD EU ID: CSH003
AQD EU description: RA-33 Sesqui Silo Storage Vent
Company EU ID: RA-33
Company EU Description: RA-33 Sesqui Silo Storage Vent

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Crushing/Screening/Handling

 Unit Type: Material Handling

 Number of Conveyor transfer and drop points: 8

 Type of Material being Transferred: Soda ash

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - **Manufacturer Data**
 - **Test results for this source**
 - **Similar source test results**
 - **GRICalc**
 - **Tanks Program**
 - **AP-42**
 - **Other. If this is selected, attach a document with a description of the method used.**

Criteria Pollutants :

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPS) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

Federal and State Rule Applicability

New Source Performance Standards (NSPS)

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources. Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

Not affected

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.
Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **State Rule Applicability**

 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
Not Affected
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

- **Emission Unit Attachments**

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349 Page 59 NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

- **AQD EU ID:** CSH007
- **AQD EU description:** R-5 Sesqui Fluid Bed Calciner (RA-25)
- **Company EU ID:** Mono-12
- **Company EU Description:** MONO-12 Mono Loadout Screening

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Crushing/Screening/Handling
 Unit Type: Screening
 Screen: Dry Screen
 Screen Type: Oscillating
 Type of Material Screened: Soda Ash
 Manufacture Date:
 Power Source: Line Power
 Operating in Conjunction with a Crusher: No

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - **Manufacturer Data**
 - **Test results for this source**
 - **Similar source test results**
 - **GRICalc**
 - **Tanks Program**
 - **AP-42**
 - **Other. If this is selected, attach a document with a description of the method used.**

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE)*</td>
<td>Units*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS) Not affected

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: CSH010
AQD EU description: RD-3 Lime Slaker Vent
Company EU ID: RD-3
Company EU Description: RD-3 Lime Slaker Vent

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Crushing/Screening/Handling

 Unit Type: Material Handling

 Number of Conveyor transfer and drop points: 1

 Type of Material being transferred: Slaked lime

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:

 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 Not affected

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

 Not affected

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Not Affected
Section II - Specific Air Contaminant Source Information

AQN EU ID: CSH011
AQN EU description: Mine Water Housekeeping
Company EU ID: MW-4
Company EU Description: MW-4 - Mine Water Housekeeping

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Crushing/Screening/Handling
 Unit Type: Material Handling
 Number of Conveyor transfer and drop points: 6
 Type of Material being Transferred: Soda ash

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgate thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pollutant Category</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE)*</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------------------</td>
<td>-----------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.
Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**
 - Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**
 - Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

New Source Performance Standards (NSPS)

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

NSPS Subpart

OOO - Nonmetallic Mineral Processing Plants

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl
Chloride.

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Not affected

Prevention of Significant Deterioration (PSD)

These rules are found under WAQSR Chapter 6, Section 4.

Not Affected

Non-Attainment New Source Review

These rules are found under WAQSR Chapter 6, Section 13.

Not Affected

- **Emission Unit Attachments**

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: CSH014
AQD EU description:
Company EU ID: NS-10
Company EU Description: Mono Power Flyash Silo

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Reconstruction

 Please explain:
 Originally constructed and commissioned in 1987 under Permit Nos. CT-603/OP-180; not used or maintained for a number of years.

- **Emission Unit Type Specific Information**

 Emission Unit Type: Crushing/Screening/Handling
 Unit Type: Material Handling

 Number of Conveyor transfer and drop points: 1
 Type of Material being transferred: Fly ash

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse Gases (GHGs):</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **Yes**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Proposed BACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>Baghouse at 0.005 gr/dscf</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>Baghouse at 0.005 gr/dscf</td>
</tr>
</tbody>
</table>

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 Not affected

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

 National Emissions Standards for Hazardous Air Pollutants

 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>6172</td>
<td>BACT Analysis</td>
<td>Westvaco Project BACT Analysis</td>
</tr>
</tbody>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: CSH015

AQD EU description:

Company EU ID: NS-11

Company EU Description: Mono Power Flyash Truck Loading

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Reconstruction

 Please explain:

 Originally constructed and commissioned in 1987 under Permit Nos. CT-603/OP-180; not used or maintained for a number of years.

- Emission Unit Type Specific Information

 Emission Unit Type: Crushing/Screening/Handling

 Unit Type: Material Handling

 Number of Conveyor transfer and drop points : 1

 Type of Material being Transferred: Fly ash

- Potential Operating Schedule – Provide the operating schedule for this emissions unit

 Hours/day : 24

 Hours/year : 8760

- Emissions Information

 "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:

 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) *</th>
<th>Potential to Emit (PTE) (lbs/hr) *</th>
<th>Potential to Emit (PTE) (tons/yr) *</th>
<th>Basis for Determination *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) *</th>
<th>Potential to Emit (PTE) (lbs/hr) *</th>
<th>Potential to Emit (PTE) (tons/yr) *</th>
<th>Basis for Determination *</th>
</tr>
</thead>
</table>

*Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **Yes**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Proposed BACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>Baghouse at 0.005 gr/dscf</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>Baghouse at 0.005 gr/dscf</td>
</tr>
</tbody>
</table>

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 National Emissions Standards for Hazardous Air Pollutants

 Not affected
(NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

- **Prevention of Significant Deterioration (PSD)**
 These rules are found under WAQSR Chapter 6, Section 4.

- **Non-Attainment New Source Review**
 These rules are found under WAQSR Chapter 6, Section 13.

- **Emission Unit Attachments**

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>6171</td>
<td>BACT Analysis</td>
<td>Westvaco Project BACT Analysis</td>
</tr>
</tbody>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: CTW001
AQD EU description: Sesqui Cooling Tower Cell 1
Company EU ID: ct1
Company EU Description: cooling tower

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:
 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Cooling Tower
 Cell Flow Rate (cu. ft/min): 665000
 Circulation Rate (gallons/min): 2500
 VOC Content (%): 0.0000
 HAP Content (%): 0.0000
 Number of cells: 1

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) Units</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(formerly particulate matter, PM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant Category</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE)*</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS) Not affected

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) Not affected

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
(NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: CTW002
AQD EU description: Sesqui Cooling Tower Cell 2
Company EU ID: ct2
Company EU Description: Sesqui Cooling Tower Cell 2

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- Emission Unit Type Specific Information

 Emission Unit Type: Cooling Tower

 Cell Flow Rate (cu. ft/min): 665000
 Circulation Rate (gallons/min): 2500
 VOC Content (%): 0.0000
 Number of cells: 1

 HAP Content (%): 0.0000

- Potential Operating Schedule – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- Emissions Information "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE)*</td>
<td>Units*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>--------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 - **New Source Performance Standards (NSPS)**

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 Not affected

 - **National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)**

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
(NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

Other

Please explain:

Increased process utilization

Emission Unit Type Specific Information

- Emission Unit Type: Cooling Tower
- Cell Flow Rate (cu. ft/min): 665000
- Circulation Rate (gallons/min): 2500
- VOC Content (%): 0.0000
- HAP Content (%): 0.0000
- Number of cells: 1

Potential Operating Schedule – Provide the operating schedule for this emissions unit

- Hours/day: 24
- Hours/year: 8760

Emissions Information

"Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:

- Manufacturer Data
- Test results for this source
- Similar source test results
- GRICalc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
PM & 2.5 microns in diameter (PE/PM2.5)
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

New Source Performance Standards (NSPS): Not affected

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not affected

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride.)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Section II - Specific Air Contaminant Source Information

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other
 Please explain:
 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Cooling Tower
 Cell Flow Rate (cu. ft/min): 665000
 Circulation Rate (gallons/min): 2500
 VOC Content (%): 0.0000
 HAP Content (%): 0.0000
 Number of cells: 1

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE)*</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse Gases (GHGs):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Section II - Specific Air Contaminant Source Information

AQD EU ID: CTW005
AQD EU description: Monol Cooling Tower Cell 1
Company EU ID: ct1
Company EU Description: Monol Cooling Tower Cell 1

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- Emission Unit Type Specific Information

 Emission Unit Type: Cooling Tower
 Cell Flow Rate (cu. ft/min): 500000
 Circulation Rate (gallons/min): 2790
 VOC Content (%): 0.0000
 HAP Content (%): 0.0000
 Number of cells: 1

- Potential Operating Schedule – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- Emissions Information "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:

 Manufacturer Data
 Test results for this source
 Similar source test results
 GRICalc
 Tanks Program
 AP-42
 Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Standards Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**
 - Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**
 - Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

New Source Performance Standards (NSPS)

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: CTW006
AQD EU description: Mono1 Cooling Tower Cell 2
Company EU ID: ct2
Company EU Description: Mono1 Cooling Tower Cell 2

Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

Other

Please explain:
Increased process utilization

Emission Unit Type Specific Information

Emission Unit Type: Cooling Tower

Cell Flow Rate (cu. ft/min): 500000
Circulation Rate (gallons/min): 2790

VOC Content (%): 0.0000
HAP Content (%): 0.0000

Number of cells: 1

Potential Operating Schedule – Provide the operating schedule for this emissions unit

Hours/day: 24
Hours/year: 8760

Emissions Information

"Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:
- Manufacturer Data
- Test results for this source
- Similar source test results
- GRICalc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>------------------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- Best Available Control Technology (BACT)
 - Was a BACT Analysis completed for this unit? No

- Lowest Achievable Emission Rate (LAER)
 - Was a LAER Analysis completed for this unit? No

- Federal and State Rule Applicability

 New Source Performance Standards (NSPS) Not affected
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) Not affected
 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD) rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: CTW007
AQD EU description: Mono2 Cooling Tower Cell 1
Company EU ID: ct1
Company EU Description: Mono2 Cooling Tower Cell 1

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Cooling Tower

 Cell Flow Rate (cu. ft/min): 760000

 Circulation Rate (gallons/min): 2483

 VOC Content (%): 0.0000

 HAP Content (%): 0.0000

 Number of cells: 1

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE)*</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

** Best Available Control Technology (BACT) **

Was a BACT Analysis completed for this unit? **No**

** Lowest Achievable Emission Rate (LAER) **

Was a LAER Analysis completed for this unit? **No**

** Federal and State Rule Applicability **

** New Source Performance Standards (NSPS) **

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

** National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) **

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride.)

Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Not affected
Not Affected
Not Affected
Section II - Specific Air Contaminant Source Information

AQD EU ID: CTW008
AQD EU description: Mono2 Cooling Tower Cell 2
Company EU ID: ct2
Company EU Description: Mono 2 cooling tower

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other
 Please explain:
 Increased process utilization

- Emission Unit Type Specific Information

 Emission Unit Type: Cooling Tower
 Cell Flow Rate (cu. ft/min): 760000
 Circulation Rate (gallons/min): 2483
 VOC Content (%) : 0.0000
 HAP Content (%) : 0.0000
 Number of cells : 1

- Potential Operating Schedule – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- Emissions Information

 "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Pollutant Categories

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

Best Available Control Technology (BACT)

- Was a BACT Analysis completed for this unit? **No**

Lowest Achievable Emission Rate (LAER)

- Was a LAER Analysis completed for this unit? **No**

Federal and State Rule Applicability

New Source Performance Standards (NSPS)
New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride.)

Not affected

Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349 Page 98 NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Cooling Tower

 Cell Flow Rate (cu. ft/min): 760000

 Circulation Rate (gallons/min): 2483

 VOC Content (%): 0.0000

 HAP Content (%): 0.0000

 Number of cells: 1

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:

 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Potential to Emit (PTE)*</td>
<td>Efficiency Standards Units*</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>------------------------------------</td>
<td>------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.
Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.
** AQD Calculated - See ‘Help’ for more information.

** Best Available Control Technology (BACT)**

Was a BACT Analysis completed for this unit? No

** Lowest Achievable Emission Rate (LAER)**

Was a LAER Analysis completed for this unit? No

** Federal and State Rule Applicability**

New Source Performance Standards (NSPS)

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride.)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63. Not affected

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4. Not Affected

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13. Not Affected

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349 Page 101 NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 - **Emission Unit Type**: Fugitive
 - **Type of Fugitive Emission**: Stockpile
 - **Type of Stockpile**: Mined Material

 Material Added/Removed from Pile (tons/day):

 Material Added/Removed from Pile (tons/yr): 1,125,000.00

 Number of Stockpiles: 1

 Size of Stockpile: 7353 cu. yd

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:

- **Manufacturer Data**
- **Test results for this source**
- **Similar source test results**
- **GRICalc**
- **Tanks Program**
- **AP-42**
- **Other. If this is selected, attach a document with a description of the method used.**

Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Potential to Emit (PTE) (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE) (lbs/hr)*</td>
<td>Units*</td>
<td>Basis for Determination*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>--------</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)

 New Source Performance Standards are not affected.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

 National Emissions Standards for Hazardous Air Pollutants are not affected.
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD) are listed under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review are listed under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

Other

Please explain:

Increased process utilization

Emission Unit Type Specific Information

- Emission Unit Type: Fugitive
- Type of Fugitive Emission: Other
- Detailed Description of Fugitive Source: Soda ash rail car loading

Potential Operating Schedule – Provide the operating schedule for this emissions unit

Hours/day: 24
Hours/year: 8760

Emissions Information

“Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:
- Manufacturer Data
- Test results for this source
- Similar source test results
- GRICalc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 Not affected

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

 Not affected

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Section II - Specific Air Contaminant Source Information

- **AQD EU ID:** FUG009
- **AQD EU description:** Sesqui Pile Wind Erosion
- **Company EU ID:** SESQUWE
- **Company EU Description:** Sesqui ore stockpile wind erosion

Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

Other

Please explain:

Increased process utilization

Emission Unit Type Specific Information

- **Emission Unit Type:** Fugitive
- **Type of Fugitive Emission:** Stockpile
- **Type of Stockpile:** Mined Material

Material Added/Removed from Pile (tons/day):

Material Added/Removed from Pile (tons/yr): 1,125,000.00

Number of Stockpiles: 1

Size of Stockpile: 73553 cu. yd

Potential Operating Schedule – Provide the operating schedule for this emissions unit

Hours/day: 24

Hours/year: 8760

Emissions Information “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:
- Manufacturer Data
- Test results for this source
- Similar source test results
- GRI/Calc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter,</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Westvaco Facility - F000349 Page 108 NSR Application - A0001209
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

 National Emissions Standards for Hazardous Air Pollutants

 Not affected
(NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- **Emission Unit Attachments**

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: LUD001
AQD EU description: Sesqui Bagging
Company EU ID: RA-28
Company EU Description: RA-28 Sesqui bagging

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):
 Other
 Please explain: Increased process utilization

- Emission Unit Type Specific Information

 Emission Unit Type: Loading/Unloading/Dump
 Maximum Hourly Throughput: 60 Units: tons/hr

 Detailed Description of Loading/Unloading/Dump Source:
 Automated machine bags soda ash in various sized bags. Emission calculations included in Attachment 2962.

*Provide detailed calculations documenting the potential emissions and emission factors used to calculate emissions from this source.

- Potential Operating Schedule – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- Emissions Information
 "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

Basis for Determination Options:
- Manufacturer Data
- Test results for this source
- Similar source test results
- GRICalc
- Tanks Program
- AP-42
- Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(formerly particulate matter, PM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Potential to Emit (PTE) (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE) Units</td>
<td>Basis for Determination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

- **Best Available Control Technology (BACT)**
 - Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**
 - Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS) Subject to subpart
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 NSPS Subpart
 OOO - Nonmetallic Mineral Processing Plants

National Emission Standards for Hazardous Air Not affected

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.
 Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.
Pollutants (NESHAP Part 61)
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349 Page 113 NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

AQD EU ID: LUD003
AQD EU description: Mono-9 Mono
Company EU ID: Mono-9
Company EU Description: Mono-9 Mono
Railcar Loadout

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Loading/Unloading/Dump

 Maximum Hourly Throughput: 800

 Units: tons/hr

 Detailed Description of Loading/Unloading/Dump Source: Soda ash rail car loading; emission calculations included in Attachment 2962

 Provide detailed calculations documenting the potential emissions and emission factors used to calculate emissions from this source.

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:

 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 Not affected
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 Not affected
 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl
chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD) rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not affected

Not Affected

Not Affected
Section II - Specific Air Contaminant Source Information

AQD EU ID: LUD004
AQD EU description: Mono Bulk Truck Loadout
Mono-10 Mono Bulk Truck Loadout

Company EU ID: Mono-10
Company EU Description: Mono-10 Mono Bulk Truck Loadout

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

<table>
<thead>
<tr>
<th>Emission Unit Type</th>
<th>Maximum Hourly Throughput</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading/Unloading/Dump</td>
<td>100</td>
<td>tons/hr</td>
</tr>
</tbody>
</table>

 Detailed Description of Loading/Unloading/Dump Source:

 Soda ash truck loading; emission calculations included in Attachment 2962

 *Provide detailed calculations documenting the potential emissions and emission factors used to calculate emissions from this source.

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day : 24
 Hours/year : 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards Potential to Emit (PTE)*</td>
<td>Units*</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td>---</td>
<td>--------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>particulate matter, PM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPS) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

New Source Performance Standards (NSPS) Not affected

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) Not affected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Section II - Specific Air Contaminant Source Information

AQD EU ID: LUD006
AQD EU description: Rail Traffic Switching

Company EU ID: Rail
Company EU Description: Rail Traffic Switching

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased rail activity

- **Emission Unit Type Specific Information**

 Emission Unit Type: Loading/Unloading/Dump

 Maximum Hourly Throughput:

 Units:

 Detailed Description of Loading/Unloading/Dump Source:

 Emissions are from switch engine and shuttle wagon activity in Westvaco switch yard; emission calculations are included in Attachment 2962.

 *Provide detailed calculations documenting the potential emissions and emission factors used to calculate emissions from this source.

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pollutant Category</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE)*</td>
<td>Units*</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl.

Westvaco Facility - F000349 Page 121 NSR Application - A0001209
chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

- **Prevention of Significant Deterioration (PSD)**
 These rules are found under WAQSR Chapter 6, Section 4.

 Not Affected

- **Non-Attainment New Source Review**
 These rules are found under WAQSR Chapter 6, Section 13.

 Not Affected

- **Emission Unit Attachments**

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: TNK001
AQD EU description: MW-1 Lime Silo
Company EU ID: MW-1
Company EU Description: MW-1 Lime Silo

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increases process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Storage Tank/Silo

 Maximum Hourly Throughput: 7.5000 units

 Units: tons/hr

 Is Tank Heated: No

 Operating Pressure (psig): Vapor Pressure of Material

 Stored (psig):

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:

 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants :

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(formerly particulate matter, PM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Pollutant Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>diameter (PE/PM2.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards Potential to Emit (PTE)</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse Gases (GHGs):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**
 - Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**
 - Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

<table>
<thead>
<tr>
<th>NSPS Subpart</th>
<th>Subject to subpart</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOO - Nonmetallic Mineral Processing Plants</td>
<td>Not affected</td>
</tr>
</tbody>
</table>

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These
include asbestos, benzene, beryllium, mercury, and vinyl chloride).

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

<table>
<thead>
<tr>
<th>Standard Description</th>
<th>Affected Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.</td>
<td>Not affected</td>
</tr>
</tbody>
</table>

Prevention of Significant Deterioration (PSD)

<table>
<thead>
<tr>
<th>Standard Description</th>
<th>Affected Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>These rules are found under WAQSR Chapter 6, Section 4.</td>
<td>Not Affected</td>
</tr>
</tbody>
</table>

Non-Attainment New Source Review

<table>
<thead>
<tr>
<th>Standard Description</th>
<th>Affected Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>These rules are found under WAQSR Chapter 6, Section 13.</td>
<td>Not Affected</td>
</tr>
</tbody>
</table>

Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>
Section II - Specific Air Contaminant Source Information

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increases process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Storage Tank/Silo

 Maximum Hourly Throughput: 12.0000

 Units: tons/hr

 Is Tank Heated: No

 Operating Pressure (psig):

 Vapor Pressure of Material Stored (psig):

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:

 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse Gases (GHGs):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.
Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**
 - Was a BACT Analysis completed for this unit? **No**

- **Lowest Achievable Emission Rate (LAER)**
 - Was a LAER Analysis completed for this unit? **No**

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 NSPS Subpart
 OOO - Nonmetallic Mineral Processing Plants
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Not affected

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Not Affected

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

Not Affected

- Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

-
Section II - Specific Air Contaminant Source Information

AQD EU ID: VNT001
AQD EU description: PA-6 Sesqui Plant Dissolver Vent
Company EU ID: PA-6
Company EU Description: PA-6 Sesqui Plant Dissolver Vent

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Process Vent

 Flow Rate or Throughput: 788400.0 Units: tons/yr

 VOC Concentration (%): 0.000

 HAPs Concentration (%): 0.000

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRI/Calc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Standards Units</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Standards Units</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

Best Available Control Technology (BACT)

Was a BACT Analysis completed for this unit? **No**

Lowest Achievable Emission Rate (LAER)

Was a LAER Analysis completed for this unit? **No**

Federal and State Rule Applicability

New Source Performance Standards (NSPS)

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources. Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
Not Affected
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

- **Emission Unit Attachments**

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>
Section II - Specific Air Contaminant Source Information

AQD EU ID: VNT002
AQD EU description: PA-7 Sesqui Plant Dissolver Vent

Company EU ID: PA-7
Company EU Description: PA-7 Sesqui Plant Dissolver Vent

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Process Vent

 Flow Rate or Throughput: 657000.0 Units: tons/yr

 VOC Concentration (%): 0.000 HAPs Concentration (%): 0.000

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24

 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRI/Calc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE)*</td>
<td>Potential to Emit (PTE) (lbs/hr)*</td>
<td>Potential to Emit (PTE) (tons/yr)*</td>
<td>Basis for Determination*</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------------------</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- Best Available Control Technology (BACT)
 - Was a BACT Analysis completed for this unit? **No**

- Lowest Achievable Emission Rate (LAER)
 - Was a LAER Analysis completed for this unit? **No**

- Federal and State Rule Applicability

New Source Performance Standards (NSPS)

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD) Not Affected
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

- **Emission Unit Attachments**

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Westvaco Facility - F000349 Page 134 NSR Application - A0001209
Section II - Specific Air Contaminant Source Information

AQD EU ID: VNT003
AQD EU description: PA-8 Sesqui Plant Dissolver Vent

Company EU ID: PA-8
Company EU Description: PA-8 Sesqui Plant Dissolver Vent

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:

 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Process Vent

 Flow Rate or Throughput: 788400.0
 Units: tons/yr

 VOC Concentration (%): 0.000
 HAPs Concentration (%): 0.000

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information**

 "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRI/Calc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants :

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/hr)</th>
<th>Efficiency Standards Potential to Emit (PTE)*</th>
<th>Units*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)

 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

 Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Not Affected
Section II - Specific Air Contaminant Source Information

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other
 Please explain:
 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Process Vent
 Flow Rate or Throughput: 788400.0
 Units: tons/yr
 VOC Concentration (%): 0.000
 HAPs Concentration (%): 0.000

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 - **Hours/day:** 24
 - **Hours/year:** 8760

- **Emissions Information** “Potential to emit” means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. *If this is selected, attach a document with a description of the method used.*

Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE)* (tons/yr)*</td>
<td>Basis for Determination*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)* (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See ‘Help’ for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS) Not affected
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61) Not affected
 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD) rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review rules are found under WAQSR Chapter 6, Section 13.

Emission Unit Attachments

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Not affected

Not Affected

Not Affected
Section II - Specific Air Contaminant Source Information

AQD EU ID: VNT010
AQD EU description:
Company EU ID: MW-6
Company EU Description: MW-6 H2S Scrubber/CO2 Stripping System

- **Source Installation or Modification Schedule** – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):

 Other

 Please explain:
 Increased process utilization

- **Emission Unit Type Specific Information**

 Emission Unit Type: Process Vent

 Flow Rate or Throughput: 5755320.0
 Units: tons/yr

 VOC Concentration (%): 0.000
 HAPs Concentration (%): 0.000

- **Potential Operating Schedule** – Provide the operating schedule for this emissions unit

 Hours/day: 24
 Hours/year: 8760

- **Emissions Information** "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term “capacity factor” as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRI/Calc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

 Criteria Pollutants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE)*</th>
<th>Potential to Emit (PTE) (lbs/hr)*</th>
<th>Potential to Emit (PTE) (tons/yr)*</th>
<th>Basis for Determination*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE) (tons/yr)</td>
<td>Basis for Determination*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) (tons/yr)</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

Greenhouse Gases (GHGs):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pre-Controlled Potential Emissions (tons/yr)</th>
<th>Efficiency Standards</th>
<th>Potential to Emit (PTE) (tons/yr)</th>
<th>Basis for Determination*</th>
</tr>
</thead>
</table>

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.
Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

New Source Performance Standards (NSPS)

New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)

National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

Not affected

National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)

Not affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
These rules are found under WAQSR Chapter 6, Section 13.

- **Emission Unit Attachments**

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Section II - Specific Air Contaminant Source Information

AQD EU ID: VNT011
AQD EU description:
Company EU ID: MW-7
Company EU Description: Longwall Water Project H2S vent

- Source Installation or Modification Schedule – Select reason(s) for this emissions unit being included in this application (must be completed regardless of date of installation or modification):
 Other
 Please explain:
 Increased process utilization

- Emission Unit Type Specific Information
 Emission Unit Type: Process Vent
 Flow Rate or Throughput: 110.0 acfm
 VOC Concentration (%): 0.000
 HAPs Concentration (%): 0.000

- Potential Operating Schedule – Provide the operating schedule for this emissions unit
 Hours/day: 24
 Hours/year: 8760

- Emissions Information
 "Potential to emit" means the maximum capacity of a source to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation is enforceable by the EPA and the Division. This term does not alter or affect the use of this term for any other purposes under the Act, or the term "capacity factor" as used in Title IV of the Act or the regulations promulgated thereunder.

 Basis for Determination Options:
 - Manufacturer Data
 - Test results for this source
 - Similar source test results
 - GRICalc
 - Tanks Program
 - AP-42
 - Other. If this is selected, attach a document with a description of the method used.

Criteria Pollutants:

| Pollutant | Pre-Controlled Potential Emissions (tons/yr) | Efficiency Standards | Potential to Emit (PTE)* | Potential to Emit (PTE) (lbs/hr)* | Potential to Emit (PTE) (tons/yr)* | Basis for Determination*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate emissions (PE/PM) (formerly particulate matter, PM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 10 microns in diameter (PE/PM10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PM # 2.5 microns in diameter (PE/PM2.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfur dioxide (SO2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Pre-Controlled Potential Emissions (tons/yr)</td>
<td>Efficiency Standards</td>
<td>Potential to Emit (PTE)*</td>
<td>Basis for Determination*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile organic compounds (VOC)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hazardous Air Pollutants (HAPs)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Reduced Sulfur (TRS)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid Mist (SAM)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants:

Greenhouse Gases (GHGs):

* Provide your calculations as an attachment and explain how all process variables and emissions factors were selected. Note the emission factor(s) employed and document origin. Example: AP-42, Table 4.4-3 (8/97); stack test, Method 5, 4/96; mass balance based on MSDS; etc.

** AQD Calculated - See 'Help' for more information.

- **Best Available Control Technology (BACT)**

 Was a BACT Analysis completed for this unit? No

- **Lowest Achievable Emission Rate (LAER)**

 Was a LAER Analysis completed for this unit? No

- **Federal and State Rule Applicability**

 New Source Performance Standards (NSPS)
 New Source Performance Standards are listed under 40 CFR 60 - Standards of Performance for New Stationary Sources.

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61)
 National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).

 National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
 National Emission Standards for Hazardous Air Pollutants
(NESHAP Part 63) standards are listed under 40 CFR 63.

Prevention of Significant Deterioration (PSD)
Not Affected
These rules are found under WAQSR Chapter 6, Section 4.

Non-Attainment New Source Review
Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

- **Emission Unit Attachments**

<table>
<thead>
<tr>
<th>Required Attachment</th>
<th>Public Document Id</th>
<th>Attachment Type</th>
<th>Description</th>
</tr>
</thead>
</table>

Facility Detail Report
Facility Name: Westvaco Facility
ID: F000349
Facility Detail Report (F000349): Westvaco Facility

- Facility Information

 Facility ID: F000349
 FacilityName: Westvaco Facility
 Facility Description: Trona Mining and Soda Ash Production
 Company Name: FMC Wyoming Corporation
 Operating Status: Operating
 Facility Class: Title V
 CERR Class: HAPCAP
 AFS: 5603700049
 Facility Type: Trona Industry

- Location

<table>
<thead>
<tr>
<th>Physical Address</th>
<th>City</th>
<th>County</th>
<th>Lat/Long</th>
<th>PLSS</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweetwater County</td>
<td>Sweetwater</td>
<td>41.61277/-</td>
<td>109.81715 -</td>
<td>S22-T19N-R110W</td>
<td>05/08/2012</td>
</tr>
</tbody>
</table>

 Location Detail For : null

 Latitude: 41.61277
 Longitude: -109.81715
 Quarter Quarter: Quarter:
 Section: 22
 Township: 19N
 County: Sweetwater
 Distct: District 5
 Physical Address 1: Physical Address 2:
 City: Sweetwater County
 Zip: 82935
 Effective Date: 05/08/2012

- Notes

<table>
<thead>
<tr>
<th>User Name</th>
<th>Date</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data, Legacy</td>
<td>05/08/2012</td>
<td>[WISE_Site_Descr.] Trona Mining and Soda Ash Production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[AQDS_Site_Memo] Correct facility name is Soda Ash Facility - Green</td>
</tr>
<tr>
<td></td>
<td></td>
<td>River Plant (Westvaco). For purposes of the database merge, name is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>temporarily shortened.</td>
</tr>
</tbody>
</table>

- NAICS Codes

 212391 Potash, Soda, and Borate Mineral Mining (SIC 1474)

- Contacts

<table>
<thead>
<tr>
<th>Contact Type</th>
<th>Contact Person</th>
<th>Phone Number</th>
<th>Email</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance</td>
<td>Egeland, Jon</td>
<td>(307) 872-2225</td>
<td>jon.egeland@fmc.com</td>
<td>05/15/2013</td>
<td></td>
</tr>
<tr>
<td>NSR Permitting</td>
<td>Lucas, John</td>
<td>(307) 872-2195</td>
<td>john.lucas@fmc.com</td>
<td>05/15/2013</td>
<td></td>
</tr>
<tr>
<td>Compliance</td>
<td>Lutz, Julie</td>
<td>(307) 872-2161</td>
<td>JULIE_LUT@fmc.com</td>
<td>05/15/2013</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>Name</td>
<td>Phone</td>
<td>Email</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Environmental contact</td>
<td>Martin, Kasey</td>
<td>(307) 872-2242</td>
<td>kasey.martin@fmc.com</td>
<td>11/26/2014</td>
<td></td>
</tr>
<tr>
<td>Environmental contact</td>
<td>Penamora, Andrew</td>
<td>(307) 872-2111</td>
<td>andrew.penamora@fmc.com</td>
<td>12/01/2014</td>
<td></td>
</tr>
<tr>
<td>NSR Permitting contact</td>
<td>Schnauber, Otto</td>
<td>(307) 872-2257</td>
<td></td>
<td>01/01/2015</td>
<td></td>
</tr>
<tr>
<td>Compliance contact</td>
<td>Schnauber, Otto</td>
<td>(307) 872-2257</td>
<td></td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>NSR Permitting contact</td>
<td>Schnauber, Otto</td>
<td>(307) 872-2257</td>
<td></td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>Billing contact</td>
<td>von Ahrens, Fred</td>
<td>(307) 872-2501</td>
<td></td>
<td>01/01/2015</td>
<td></td>
</tr>
<tr>
<td>Responsible Official</td>
<td>von Ahrens, Fred</td>
<td>(307) 872-2501</td>
<td></td>
<td>08/11/2014</td>
<td></td>
</tr>
<tr>
<td>Compliance contact</td>
<td>von Ahrens, Fred</td>
<td>(307) 872-2501</td>
<td></td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>Environmental contact</td>
<td>von Ahrens, Fred</td>
<td>(307) 872-2501</td>
<td></td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>Environmental contact</td>
<td>Wendorf, Michael</td>
<td>(307) 382-5555</td>
<td>wendorf@wyoming.com</td>
<td>05/15/2013</td>
<td></td>
</tr>
<tr>
<td>NSR Permitting contact</td>
<td>Wendorf, Michael</td>
<td>(307) 382-5555</td>
<td>wendorf@wyoming.com</td>
<td>05/15/2013</td>
<td></td>
</tr>
<tr>
<td>Compliance contact</td>
<td>Wendorf, Michael</td>
<td>(307) 382-5555</td>
<td>wendorf@wyoming.com</td>
<td>05/15/2013</td>
<td></td>
</tr>
<tr>
<td>Compliance contact</td>
<td>Aalbers, Angela</td>
<td>(208) 547-1250</td>
<td>angela.renee.aalbers@monsanto.com</td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>Compliance contact</td>
<td>Boyd, Jordan</td>
<td>(307) 872-2566</td>
<td></td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>Compliance contact</td>
<td>Clark, Dale</td>
<td>(307) 872-2195</td>
<td>DALE_CLARK@fmc.com</td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>Environmental contact</td>
<td>Clark, Dale</td>
<td>(307) 872-2195</td>
<td>DALE_CLARK@fmc.com</td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>Compliance contact</td>
<td>Crowe, Matthew</td>
<td>(307) 584-2283</td>
<td>Matthew.Crowe@gapac.com</td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>Compliance contact</td>
<td>Kozola, Cherish</td>
<td>(307) 872-2504</td>
<td>cherish_kozola@fmc.com</td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>Compliance contact</td>
<td>Mattson, Dale</td>
<td>(307) 872-2431</td>
<td>dale_mattson@fmc.com</td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>Compliance contact</td>
<td>Pearce, James M.</td>
<td>(307) 872-2501</td>
<td></td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>NSR Permitting contact</td>
<td>Pearce, James M.</td>
<td>(307) 872-2501</td>
<td></td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>Compliance contact</td>
<td>Rodway, Grant</td>
<td>(307) 872-2225</td>
<td></td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
<tr>
<td>NSR Permitting contact</td>
<td>Shaffer, Michael</td>
<td>(307) 872-2257</td>
<td></td>
<td>05/15/2013 12/31/2014</td>
<td></td>
</tr>
</tbody>
</table>

Contact Detail For: Egeland, Jon

Prefix: Jon
Middle Name:
Suffix:
Company Title: FMC Wyoming Corporation
Contact's Company Name: FMC Wyoming Corporation
Address 1: Box 872
Facility Detail Report (F000349): Westvaco Facility

Address 2:
City: Green River
State: Wyoming
Zip Code: 82935

Work Phone No: (307) 872-2225
Address 2:
Mobile Phone No:
Fax No:
Email: jon.egeland@fmc.com
Email Pager Address:

Contact Detail For: Lucas, John

Prefix:
Middle Name:
Suffix:
Company Title:
Contact's Company Name: FMC Wyoming Corporation
Address 1: PO Box 872
Address 2:
City: Green River
State: Wyoming
Zip Code: 82935
Work Phone No: (307) 872-2195
Secondary Phone No:
Secondary Ext. No:
Mobile Phone No:
Fax No:
Email: john.lucas@fmc.com
Email Pager Address:

Contact Detail For: Lutz, Julie

Prefix:
Middle Name:
Suffix:
Company Title:
Contact's Company Name: FMC Wyoming Corporation
Address 1: Box 872
Address 2:
City: Green River
State: Wyoming
Zip Code: 82935
Work Phone No: (307) 872-2161
Secondary Phone No:
Secondary Ext. No:
Mobile Phone No:
Fax No:
Email: JULIE_LUTZ@fmc.com
Email Pager Address:

Contact Detail For: Martin, Kasey
Prefix: Mr. First Name: Kasey
Middle Name: Last Name: Martin
Suffix:
Company Title: Environmental Engineer Contact's Company Name: FMC Wyoming Corporation
Address 1: P.O. Box 872
Address 2:
City: Green River Zip Code: 82935
State: Wyoming
Work Phone No: (307) 872-2242
Address 2:
City: Green River Zip Code: 82935
State: Wyoming
Work Phone No: (307) 872-2111
Address 2:
City: Green River Zip Code: 82935
State: Wyoming
Work Phone No: (307) 872-2257
Address 2:
City: Green River Zip Code: 82935
State: Wyoming
Email: kasey.martin@fmc.com
Email Pager Address:
Email Pager Address:

Contact Detail For : Penamora, Andrew

Prefix:
Middle Name:
Suffix:
Company Title: Environmental Engineer Contact's Company Name: FMC Wyoming Corporation
Address 1: P.O. Box 872
Address 2:
City: Green River Zip Code: 82935
State: Wyoming
Work Phone No: (307) 872-2111
Address 2:
City: Green River Zip Code: 82935
State: Wyoming
Work Phone No: (307) 872-2257
Address 2:
City: Green River Zip Code: 82935
State: Wyoming
Email: andrew.penamora@fmc.com
Email Pager Address:

Contact Detail For : Schnauber, Otto

Prefix:
Middle Name:
Suffix:
Company Title: Contact's Company Name: FMC Wyoming Corporation
Address 1: Box 872
Address 2:
City: Green River Zip Code: 82935
State: Wyoming
Work Phone No: (307) 872-2257
Address 2:
City: Green River Zip Code: 82935
State: Wyoming
Work Phone No: (307) 872-2257
Address 2:
City: Green River Zip Code: 82935
State: Wyoming
Email: otto.schnauber@fmc.com
Email Pager Address:
Email Pager Address:
Contact Detail For: von Ahrens, Fred

Prefix:
Middle Name:
Suffix:
Company Title:
Contact's Company Name: FMC Wyoming Corporation
Address 1: P.O. Box 872
Address 2:
City: Green River
State: Wyoming
Work Phone No: (307) 872-2501
Mobile Phone No:
Fax No:
Email:
Email Pager Address:

Contact Detail For: Wendorf, Michael

Prefix:
Middle Name:
Suffix:
Company Title: Partner, Schnauber Consulting
Contact's Company Name: FMC Wyoming Corporation
Address 1: 508 Independence Circle
Address 2:
City: Rock Springs
State: Wyoming
Work Phone No: (307) 382-5555
Mobile Phone No:
Fax No:
Email: wendorf@wyoming.com
Email Pager Address:

Contact Detail For: Aalbers, Angela

Prefix: Ms.
Middle Name:
Suffix:
Company Title: ESH Business Unit Leader
Contact's Company Name: P4 Production L.L.C.
<table>
<thead>
<tr>
<th>Facility Detail Report (F000349): Westvaco Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address 1: Caribou Co</td>
</tr>
<tr>
<td>State: Idaho</td>
</tr>
<tr>
<td>Address 2:</td>
</tr>
<tr>
<td>City: Caribou Co</td>
</tr>
<tr>
<td>Zip Code: 83217</td>
</tr>
<tr>
<td>State: Idaho</td>
</tr>
<tr>
<td>Work Phone No: (208) 547-1250</td>
</tr>
<tr>
<td>Secondary Phone No.:</td>
</tr>
<tr>
<td>Address 2:</td>
</tr>
<tr>
<td>Mobile Phone No.:</td>
</tr>
<tr>
<td>Fax No.:</td>
</tr>
<tr>
<td>Email: angela.renee.aalbers@monsanto.com</td>
</tr>
<tr>
<td>Email Pager Address:</td>
</tr>
</tbody>
</table>

Contact Detail For: Boyd, Jordan

Prefix:	**First Name:** Jordan
Middle Name:	**Last Name:** Boyd
Suffix:	**Company Title:**
Company Title:	**Contact’s Company Name:** FMC Wyoming Corporation
Address 1: PO Box 872	
Address 2:	
City: Green River	
Zip Code: 82935	
State: Wyoming	
Work Phone No: (307) 872-2566	
Secondary Phone No.:	
Address 2:	
Mobile Phone No.:	
Fax No: (307) 872-2568	
Email:	
Email Pager Address:	

Contact Detail For: Clark, Dale

Prefix:	**First Name:** Dale
Middle Name:	**Last Name:** Clark
Suffix:	**Company Title:**
Company Title:	**Contact’s Company Name:** FMC Wyoming Corporation
Address 1: P.O. Box 872	
Address 2:	
City: Green River	
Zip Code: 82935	
State: Wyoming	
Work Phone No: (307) 872-2195	
Secondary Phone No.:	
Address 2:	
Mobile Phone No.:	
Fax No.:	
Email: DALE_CLARK@fmc.com	
Email Pager Address:	
Contact Detail For: Crowe, Matthew

Prefix: First Name: Matthew
Middle Name: Last Name: Crowe
Suffix: Company Title: Georgia-Pacific Gypsum LLC

Address 1: P.O. Box 756
City: Lovell
State: Wyoming
Zip Code: 82431
Work Phone No.: (307) 584-2283
Address 2:
City:
State:
Secondary Phone No.: 242
Mobile Phone No.:
Fax No.:
Email: Matthew.Crowe@gapac.com
Email Pager Address:

Contact Detail For: Kozola, Cherish

Prefix: First Name: Cherish
Middle Name: Last Name: Kozola
Suffix: Company Title: FMC Wyoming Corporation

Address 1: P.O. Box 872
City: Green River
State: Wyoming
Zip Code: 82935
Work Phone No.: (307) 872-2504
Address 2:
City:
State:
Secondary Phone No.:
Mobile Phone No.:
Fax No.: (307) 872-2364
Email: cherish_kozola@fmc.com
Email Pager Address:

Contact Detail For: Mattson, Dale

Prefix: First Name: Dale
Middle Name: Last Name: Mattson
Suffix: Company Title: FMC Wyoming Corporation

Address 1: P.O. Box 872
City: Green River
State: Wyoming
Zip Code: 82935
Contact Detail For : Pearce, James M.

Prefix:
Middle Name: M.
Suffix:
Company Title:
Contact's Company Name: FMC Wyoming Corporation

Address 1: P.O. Box 872
Address 2:
City: Green River
State: Wyoming
Work Phone No: (307) 872-2501
Address 2:
Mobile Phone No:
Fax No:
Email:

Contact Detail For : Rodway, Grant

Prefix:
Middle Name:
Suffix:
Company Title:
Contact's Company Name: FMC Wyoming Corporation

Address 1: P.O. Box 872
Address 2:
City: Green River
State: Wyoming
Work Phone No: (307) 872-2225
Address 2:
Mobile Phone No:
Fax No:
Email:

Contact Detail For : Shaffer, Michael

Prefix:
Middle Name:

Facility Detail Report (F000349): Westvaco Facility
Facility Detail Report (F000349): Westvaco Facility

Suffix:
Company Title: FMC Wyoming Corporation
Contact's Company Name: FMC Wyoming Corporation

Address 1: P.O. Box 872
Address 2:
City: Green River
State: Wyoming
Zip Code: 82935

Work Phone No:
Secondary Phone No:
Secondary Ext. No:
Mobile Phone No:
Pager No:
Fax No:
Pager PIN No:
Email:
Email Pager Address:

- Rules & Regs

Subject to Part 60 NSPS: X
Subject to 112(r) Accidental Release Prevention:
Subject to Part 61 NESHAP:
Subject to non-attainment NSR:
Subject Part 63 NESHAP: X
Subject to PSD:

Part 60 NSPS Subparts
D - Fossil-Fuel Steam Generator Constructed After August 17, 1971
Db - Industrial-Commercial-Institutional Steam Generating Units
O00 - Nonmetallic Mineral Processing Plants
Y - Coal Preparation Plants

Part 63 NESHAP Subparts
AAAAA - Lime Manufacturing Plants
DDDDD - Industrial, Commercial, and Institutional Boilers and Process Heaters

- Attachments

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Modified By</th>
<th>Modified Date</th>
</tr>
</thead>
</table>

- Version

<table>
<thead>
<tr>
<th>Version ID</th>
<th>Version Start Date</th>
<th>Version End Date</th>
<th>Preserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURRENT</td>
<td>04/08/2015</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>29416</td>
<td>03/05/2015</td>
<td>04/08/2015</td>
<td>x</td>
</tr>
<tr>
<td>29202</td>
<td>02/23/2015</td>
<td>03/05/2015</td>
<td>x</td>
</tr>
<tr>
<td>29132</td>
<td>02/12/2015</td>
<td>02/23/2015</td>
<td>x</td>
</tr>
<tr>
<td>26502</td>
<td>04/23/2014</td>
<td>02/12/2015</td>
<td>x</td>
</tr>
<tr>
<td>349</td>
<td>05/08/2012</td>
<td>04/23/2014</td>
<td>x</td>
</tr>
</tbody>
</table>
- **Emission Unit Information**

 AQD Emissions Unit ID: APT001
 Emission Unit Type: Acid Plant/Prill Tower
 Material Produced: Other
 Maximum Throughput: 1.0000 Units: tons/yr
 AQD Description: Plant Malfunctions
 Company Equipment ID: na
 Company Equipment Description: plant malfunctions
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1975
 Initial Operation Commencement Date: 01/01/1975

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC072
 Process Name:
 Company Process Description: Plant Malfunctions
 Source Classification Code (SCC): 3-05-999-99

 Release points(s) directly associated with this process

 VER062
Facility Detail Report (F000349): Westvaco Facility

Emission Unit : BOL001

Aug 10 2015, 08:15:36

- Emission Unit Information

 AQD Emissions Unit ID: BOL001
 Emission Unit Type: Boiler
 Heat Input Rating (MMBtu/hr): 887.0
 Primary Fuel Type: Coal
 Secondary Fuel Type: Pipeline Grade Natural Gas
 Model Name and Number: 1
 AQD Description: NS-1A Mono #6 Coal/Gas-Fired Boiler
 Company Equipment ID: NS-1A
 Company Equipment Description: Mono Coal Fired Boiler
 Operating Status: Operating
 Initial Construction Commencement Date: 08/01/1973
 Initial Operation Commencement Date: 03/01/1976

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNKNOWN</td>
<td>a</td>
<td>03/01/1976</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx - Nitrogen Oxides</td>
<td></td>
<td>1244.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10 - (Includes Filterables + Condensibles) (PM<10 Microns)</td>
<td></td>
<td>197.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Processes

- Emission Process Information

 Process ID: PRC033
 Process Name:
 Company Process Description: Process for NS1A
 Source Classification Code (SCC): 1-02-002-21

 Control equipment(s) directly associated with this process

 ESP001
- **Emission Unit Information**

 AQD Emissions Unit ID: BOL002
 Emission Unit Type: Boiler
 Heat Input Rating (MMBtu/hr): 166.8
 Primary Fuel Type: Pipeline Grade Natural Gas
 Secondary Fuel Type: N/A
 Model Name and Number: 1
 AQD Description: Sesqui #1 Gas-Fired Boiler
 PH-1A Sesqui Gas Fired Boiler
 Company Equipment ID: PH-1A
 Company Equipment Description: Sesqui No.1 Gas Fired Boiler
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1952
 Initial Operation Commencement Date: 01/01/1952
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler</td>
<td>1</td>
<td>01/01/1952</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRCG38
 Company Process Description: Process for PH1A
 Source Classification Code (SCC): 1-02-006-01

 Release points(s) directly associated with this process

 VER038
- Emission Unit Information

 AQD Emissions Unit ID: BOL003
 Emission Unit Type: Boiler
 Heat Input Rating (MMBtu/hr): 166.8

 Primary Fuel Type: Pipeline Grade Natural Gas
 Secondary Fuel Type: N/A

 Model Name and Number: boiler
 AQD Description: PH-1B Sesqui Gas Fired Boiler
 Company Equipment ID: PH-1B
 Company Equipment Description: PH-1B No.2 Sesqui Gas Fired Boiler

 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1952
 Initial Operation Commencement Date: 01/01/1952
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler</td>
<td>1</td>
<td>01/01/1952</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC039
 Company Process Description: Process for PH1B
 Source Classification Code (SCC): 1-02-006-01

 Release points(s) directly associated with this process

 VER039
- **Emission Unit Information**

 AQD Emissions Unit ID: BOL004
 Emission Unit Type: Boiler
 Heat Input Rating (MMBtu/hr): 166.8
 Primary Fuel Type: Pipeline Grade Natural Gas
 Secondary Fuel Type: N/A
 Model Name and Number: boiler
 AQD Description: PH-2 Sesqui Gas Fired Boiler
 Company Equipment ID: PH-2
 Company Equipment Description: PH-2 No. 3 Sesqui Gas Fired Boiler
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1967
 Initial Operation Commencement Date: 01/01/1967
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler</td>
<td>1</td>
<td>01/01/1967</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC040
 Process Name:
 Company Process Description: Process for PH2
 Source Classification Code (SCC): 1-02-006-01

 Release points(s) directly associated with this process

 VER040
- **Emission Unit Information**

 AQD Emissions Unit ID: BOL005
 Emission Unit Type: Boiler
 Heat Input Rating (MMBtu/hr): 333.6
 Primary Fuel Type: Pipeline Grade Natural Gas
 Secondary Fuel Type: N/A
 Model Name and Number: boiler
 AQD Description: PH-3 Sesqui Gas Fired Boiler
 Company Equipment ID: PH-3
 Company Equipment Description: PH-3 No. 4 Sesqui Gas Fired Boiler
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1967
 Initial Operation Commencement Date: 01/01/1967
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler</td>
<td>1</td>
<td>01/01/1967</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC041
 Process Name:
 Company Process Description: Process for PH3
 Source Classification Code (SCC): 1-02-006-01

 Release points(s) directly associated with this process

 VER041
- **Emission Unit Information**

 AQD Emissions Unit ID: BOL006
 Emission Unit Type: Boiler
 Heat Input Rating (MMBtu/hr): 315.0
 Primary Fuel Type: Pipeline Grade Natural Gas
 Secondary Fuel Type: N/A
 Model Name and Number: boiler
 AQD Description: MW-5 #8 Gas-Fired Boiler
 MW-5 Mine Water Plant Boiler
 Company Equipment ID: MW-5
 Company Equipment Description: MW-5 No.8 Gas Boiler
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1996
 Initial Operation Commencement Date: 01/01/1996
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler</td>
<td>1</td>
<td>01/01/1996</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

- **Processes**

 - **Emission Process Information**

 Process ID: PRC042
 Process Name:
 Company Process Description: Process for MW5
 Source Classification Code (SCC): 1-02-006-01
 Release points(s) directly associated with this process
 VER042
- **Emission Unit Information**

 AQD Emissions Unit ID: BOL007
 Emission Unit Type: Boiler
 Heat Input Rating (MMBtu/hr): 887.0
 Primary Fuel Type: Coal
 Secondary Fuel Type: Pipeline Grade Natural Gas
 Model Name and Number: boiler
 AQD Description: NS-1B Mono #7 Coal/Gas-Fired Boiler
 Company Equipment ID: NS-1B
 Company Equipment Description: NS-1B Mono #7 Coal/Gas-Fired Boiler
 Operating Status: Operating
 Initial Construction Commencement Date: 08/01/1973
 Initial Operation Commencement Date: 03/01/1976
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler</td>
<td>1</td>
<td>08/01/1973</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC043
 Process Name:
 Company Process Description: Process for NS1B
 Source Classification Code (SCC): 1-02-002-21

 Control equipment(s) directly associated with this process

 ESP002
Facility Detail Report (F000349): Westvaco Facility

- Emission Unit Information

 AQD Emissions Unit ID: CKD001
 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Unit Type: Rotary
 Maximum Annual Throughput: 98112 Units: tons/yr
 Heat Input Rating (MMBtu/hr): 6.33
 Primary Fuel Type: Pipeline Grade Natural Gas
 Secondary Fuel Type: N/A
 AQD Description: RA-1 Baby Sesqui Calciner
 Company Equipment ID: RA-1
 Company Equipment Description: RA-1 Baby Sesqui Calciner
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1963
 Initial Operation Commencement Date: 01/01/1963

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciner</td>
<td>1</td>
<td>01/01/1963</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC007
 Company Process Description: Process for RA1
 Source Classification Code (SCC): 3-01-021-25

 Control equipment(s) directly associated with this process

 WSC003
Emission Unit : CKD002

AQB Emissions Unit ID: CKD002
Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
Unit Type: Rotary

Maximum Annual Throughput: 438000 tons/yr
Heat Input Rating (MMBtu/hr): 66.6

Primary Fuel Type: Pipeline Grade Natural Gas
Secondary Fuel Type: N/A

AQB Description: Sesqui Gas-Fired Calciner R-13
Company Equipment ID: RA-23A&B
Company Equipment Description: R-13 Sesqui gas fired calciner
Operating Status: Operating

Initial Construction Commencement Date: 01/01/1964
Initial Operation Commencement Date: 01/01/1964
Most Recent Construction/Modification Commencement Date:
Most Recent Operation Commencement Date:

Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciner</td>
<td>1</td>
<td>01/01/1964</td>
</tr>
</tbody>
</table>

Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Processes

- Emission Process Information

 Process ID: PRC008
 Process Name:
 Company Process Description: Process for RA23A&B
 Source Classification Code (SCC): 3-01-021-25

Control equipment(s) directly associated with this process

WSC005
WSC004
Emission Unit : CKD003

- Emission Unit Information

 AQD Emissions Unit ID: CKD003
 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Unit Type: Fixed
 Maximum Annual Throughput: 438000 Units: tons/yr
 Heat Input Rating (MMBtu/hr): 1.0
 Primary Fuel Type: Pipeline Grade Natural Gas
 Secondary Fuel Type: N/A
 AQD Description: Sesqui Gas-Fired Calciner R-13
 Company Equipment ID: RA-23A&B
 Company Equipment Description: R-13 Sesqui Gas Fired Calciner
 Operating Status: Permanently Shutdown
 Shutdown Date: 01/07/2015
 Shutdown Notification Date: 01/07/2015
 Initial Construction Commencement Date: 01/01/1979
 Initial Operation Commencement Date: 01/01/1979

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciner</td>
<td>1</td>
<td>01/01/1979</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

- Emission Process Information

 Process ID: PRC009
 Process Name:
 Company Process Description: Process for RA23B

 Release points(s) directly associated with this process

 VER009
Facility Detail Report (F000349): Westvaco Facility

- **Emission Unit Information**

 AQD Emissions Unit ID: CKD004
 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Unit Type: Rotary
 Maximum Annual Throughput: 613200 tons/yr
 Heat Input Rating (MMBtu/hr): 66.1
 Primary Fuel Type: Pipeline Grade Natural Gas
 Secondary Fuel Type: N/A
 AQD Description: RA-24 Sesqui Gas-Fired Calciner R-15
 Company Equipment ID: RA-24
 Company Equipment Description: RA-24 Sesqui Gas-Fired Calciner R-15
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1966
 Initial Operation Commencement Date: 01/01/1966
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciner</td>
<td>1</td>
<td>01/01/1995</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC010
 Process Name:
 Company Process Description: Process for RA24
 Source Classification Code (SCC): 3-01-021-25

 Control equipment(s) directly associated with this process

 WSC006
Emission Unit : CKD005

- Emission Unit Information

 AQD Emissions Unit ID: CKD005
 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Unit Type: Fluidized Bed
 Maximum Annual Throughput: 628092 Units: tons/yr
 Heat Input Rating (MMBtu/hr): 0.01
 Primary Fuel Type: Other Secondary Fuel Type: N/A
 AQD Description: R-5 Sesqui Fluid Bed Calciner (RA-25)
 Company Equipment ID: RA-25
 Company Equipment Description: R-5 Sesqui Fluid Bed Calciner (RA-25)
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1969
 Initial Operation Commencement Date: 01/01/1969
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciner</td>
<td>1</td>
<td>01/01/1970</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

- Emission Process Information

 Process ID: PRC011
 Process Name:
 Company Process Description: Process for RA25
 Source Classification Code (SCC): 3-01-021-26

 Control equipment(s) directly associated with this process

 WSC007
Emission Unit : CKD006

- Emission Unit Information

 AQD Emissions Unit ID: CKD006

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace

 Unit Type: Fluidized Bed

 Maximum Annual Throughput: 748980 Units: tons/yr

 Heat Input Rating (MMBtu/hr): 0.01

 Primary Fuel Type: Other

 Secondary Fuel Type: N/A

 AQD Description: Sesqui Fluid Bed Calciner R-6

 Company Equipment ID: RA-26

 Company Equipment Description: R-6 Sesqui fluid bed calciner (RA-26)

 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1985

 Initial Operation Commencement Date: 01/01/1985

 Most Recent Construction/Modification Commencement Date:

 Most Recent Operation Commencement Date:

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciner</td>
<td>1</td>
<td>01/01/1984</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC012

 Process Name:

 Company Process Description: Process for RA26

 Source Classification Code (SCC): 3-01-021-26

 Control equipment(s) directly associated with this process

 WSC008
- **Emission Unit Information**

 AQD Emissions Unit ID: CKD007

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace

 Unit Type: Fluidized Bed

 Maximum Annual Throughput: 1082736 Units: tons/yr

 Heat Input Rating (MMBtu/hr): 0.01

 Primary Fuel Type: Other

 Secondary Fuel Type: N/A

 AQD Description: Sesqui Fluid Bed Calciner R-2
 RA-29 R-2 Sesqui Fluid Bed Calciner (RA-29)

 Company Equipment ID: RA-29

 Company Equipment Description: RA-29 R-2 Sesqui Fluid Bed Calciner

 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1953

 Initial Operation Commencement Date: 01/01/1953

 Most Recent Construction/Modification Commencement Date: 01/01/1997

 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciner</td>
<td>1</td>
<td>01/01/1953</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 Emission Process Information

 Process ID: PRC014

 Process Name:

 Company Process Description: Process for RA29

 Source Classification Code (SCC): 3-01-021-26

 Control equipment(s) directly associated with this process

 WSC009
Emission Unit Information

AQD Emissions Unit ID: CKD008

Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
Unit Type: Rotary

Maximum Annual Throughput: 1068720
Units: tons/yr

Heat Input Rating (MMBtu/hr): 138.0

Primary Fuel Type: Pipeline Grade Natural Gas
Secondary Fuel Type: N/A

AQD Description: Mono-5 Mono 1 Gas Fired Calciner
Company Equipment ID: Mono-5
Company Equipment Description: Mono-5 Mono 1 Gas Fired Calciner

Operating Status: Operating
Initial Construction Commencement Date: 01/01/1972
Initial Operation Commencement Date: 01/01/1972

Most Recent Construction/Modification Commencement Date:
Most Recent Operation Commencement Date:

Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciner</td>
<td>1</td>
<td>01/01/1972</td>
</tr>
</tbody>
</table>

Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Processes

Emission Process Information

Process ID: PRC019

Company Process Description: Process for MONO5
Source Classification Code (SCC): 3-01-021-04

Control equipment(s) directly associated with this process

WSC010
- Emission Unit Information

 AQD Emissions Unit ID: CKD009
 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Unit Type: Fluidized Bed
 Maximum Annual Throughput: 832200 Units: tons/yr
 Heat Input Rating (MMBtu/hr): 0.01
 Primary Fuel Type: Other
 Secondary Fuel Type: N/A
 AQD Description: Mono 1 Fluid Bed Dryer
 Company Equipment ID: Mono-6
 Company Equipment Description: Mono 1 fluid bed dryer
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>fluid bed dryer</td>
<td>1</td>
<td>01/01/1972</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC020
 Process Name: Process for MONO6
 Company Process Description: Process for MONO6
 Source Classification Code (SCC): 3-01-021-07

 Control equipment(s) directly associated with this process
 WSC011
Facility Detail Report (F000349): Westvaco Facility

Emission Unit Information

- AQD Emissions Unit ID: CKD010
- Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 - Unit Type: Rotary
- Maximum Annual Throughput: 2417760 tons/yr
- Heat Input Rating (MMBtu/hr): 253.0
- Primary Fuel Type: Pipeline Grade Natural Gas
- Secondary Fuel Type: N/A
- AQD Description: Mono 2 Gas-Fired Calciner
- Company Equipment ID: NS-3
- Company Equipment Description: Mono 2 gas fired calciner
- Operating Status: Operating
- Initial Construction Commencement Date: 01/01/1975
- Initial Operation Commencement Date: 01/01/1976
- Most Recent Construction/Modification Commencement Date:
- Most Recent Operation Commencement Date:

Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciner</td>
<td>1</td>
<td>01/01/1975</td>
</tr>
</tbody>
</table>

Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Processes

Emission Process Information

- Process ID: PRC026
- Process Name:
 - Company Process Description: Process for NS3
 - Source Classification Code (SCC): 3-01-021-04

Control equipment(s) directly associated with this process

ESP003
- Emission Unit Information

AQR Emissions Unit ID: CKD011
Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
Unit Type: Fluidized Bed
Maximum Annual Throughput: 1467300 Units: tons/yr
Heat Input Rating (MMBtu/hr): 0.01
Primary Fuel Type: Other Secondary Fuel Type: N/A
AQR Description: NS-6 Mono 2 Fluid Bed Dryer
Company Equipment ID: NS-6
Company Equipment Description: NS-6 Mono 2 Fluid Bed Dryer
Operating Status: Operating
Initial Construction Commencement Date: 01/01/1975
Initial Operation Commencement Date: 01/01/1976
Most Recent Construction/Modification Commencement Date:
Most Recent Operation Commencement Date:

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryer</td>
<td>1</td>
<td>01/01/1975</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

- Emission Process Information

Process ID: PRC028
Company Process Description: Process for NS6
Source Classification Code (SCC): 3-01-021-07

Control equipment(s) directly associated with this process

WSC012
- Emission Unit Information

 AQD Emissions Unit ID: CKD012

 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace

 Unit Type: Fluidized Bed

 Maximum Annual Throughput: 1208000 Units: tons/yr

 Heat Input Rating (MMBtu/hr): 0.01

 Primary Fuel Type: Other

 Secondary Fuel Type: N/A

 AQD Description: ELDM Fluid Bed Dryer

 Company Equipment ID: MW-3

 Company Equipment Description: ELDM fluid bed dryer

 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1993

 Initial Operation Commencement Date: 01/01/1993

 Most Recent Construction/Modification Commencement Date:

 Most Recent Operation Commencement Date:

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>fluid bed dryer</td>
<td>1</td>
<td>01/01/1996</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM (Filt) - Primary PM, Filterable Portion Only</td>
<td>9.890000</td>
<td>9.890000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC031

 Process Name:

 Company Process Description: Process for MW3

 Source Classification Code (SCC): 3-01-021-07

 Control equipment(s) directly associated with this process

 WSC013
Emission Unit : CKD013

- Emission Unit Information

 AQD Emissions Unit ID: CKD013
 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Unit Type: Rotary
 Maximum Annual Throughput: 228600 Units: tons/yr
 Heat Input Rating (MMBtu/hr): 91.0
 Primary Fuel Type: Pipeline Grade Natural Gas
 Secondary Fuel Type: N/A
 AQD Description: SM-1 Gas Fired Lime Kiln
 Company Equipment ID: SM-1
 Company Equipment Description: SM-1 Gas Fired Lime Kiln
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1987
 Initial Operation Commencement Date: 01/01/1987

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>kiln</td>
<td>1</td>
<td>01/01/1985</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC035
 Process Name:
 Company Process Description: Process for SM1

 Control equipment(s) directly associated with this process

 WSC014
Facility Detail Report (F000349): Westvaco Facility

- Emission Unit Information

 AQD Emissions Unit ID: CKD014
 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Unit Type: Other
 Maximum Annual Throughput: 106872 Units: tons/yr
 Heat Input Rating (MMBtu/hr): 0.01
 Primary Fuel Type: Other
 Secondary Fuel Type: N/A
 AQD Description: BC-1 Bicarb Flash Dryer
 Company Equipment ID: BC-1
 Company Equipment Description: BC-1 Bicarb Flash Dryer
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1990
 Initial Operation Commencement Date: 01/01/1990

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryer</td>
<td>1</td>
<td>01/01/1990</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC036
 Company Process Description: Process for BC1
 Source Classification Code (SCC): 3-01-038-01

 Control equipment(s) directly associated with this process

 BAG002
- **Emission Unit Information**

 AQD Emissions Unit ID: CKD015
 Emission Unit Type: Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 Unit Type: Rotary
 Maximum Annual Throughput: 306600 tons/yr
 Heat Input Rating (MMBtu/hr): 1.0
 Primary Fuel Type: Pipeline Grade Natural Gas
 Secondary Fuel Type: N/A
 AQD Description: Sesqui Gas-Fired Calciner R-9
 Company Equipment ID: RA-22A&B
 Company Equipment Description: R-9 sesqui gas fired calciner
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1981
 Initial Operation Commencement Date: 01/01/1981

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciner</td>
<td>1</td>
<td>01/01/1981</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

- **Processes**

 - **Emission Process Information**

 Process ID: PRC045
 Process Name:
 Company Process Description: Process for RA22A
 Source Classification Code (SCC): 3-01-021-25

 Release points(s) directly associated with this process

 VER045
Emission Unit Information

- **AQP Emissions Unit ID:** CKD016
- **Emission Unit Type:** Calciner/Kiln/Dryer/Smelter/Foundry Furnace
 - **Unit Type:** Rotary
- **Maximum Annual Throughput:** 306600 tons/yr
- **Heat Input Rating (MMBtu/hr):** 1.0
- **Primary Fuel Type:** Pipeline Grade Natural Gas
- **Secondary Fuel Type:** N/A
- **AQP Description:** RA22A&B R-9 Sesqui Gas Fired Calciner
- **Company Equipment ID:** RA 22A&B
- **Company Equipment Description:** RA22A&B R-9 Sesqui Gas Fired Calciner
- **Operating Status:** Permanently Shutdown
 - **Shudown Date:** 01/07/2015
- **Shutdown Notification Date:** 01/07/2015
- **Initial Construction Commencement Date:** 01/01/1981
- **Initial Operation Commencement Date:** 01/01/1981
- **Most Recent Construction/Modification Commencement Date:**
- **Most Recent Operation Commencement Date:**

Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciner</td>
<td>1</td>
<td>01/01/1981</td>
</tr>
</tbody>
</table>

Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Processes

- **Emission Process Information**
 - **Process ID:** PRC046
 - **Process Name:**
 - **Company Process Description:** Process for RA22B
 - **Source Classification Code (SCC):** 3-01-021-25

Release points(s) directly associated with this process

VER046
- Emission Unit Information

AQD Emissions Unit ID: CSH001

Emission Unit Type: Crushing/Screening/Handling

Type of Unit: Material Handling

Maximum Annual Throughput: 3153600 Units: tons/yr

Model Name and Number: XXX

AQD Description: PA-4 Sesqui Plant Hammermill Crusher Vent

Company Equipment ID: PA-4

Company Equipment Description: PA-4 Sesqui Plant Hammermill Crusher Vent

Operating Status: Operating

Initial Construction Commencement Date: 01/01/1964

Initial Operation Commencement Date: 01/01/1964

Most Recent Construction/Modification Commencement Date:

Most Recent Operation Commencement Date:

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>vent</td>
<td>1</td>
<td>01/01/1978</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Processes

- Emission Process Information

Process ID: PRC001

Process Name:

Company Process Description: Sesqui Plant Hammermill Crusher Vent

Source Classification Code (SCC): 3-01-021-03

Control equipment(s) directly associated with this process

WSC015
Emission Unit : CSH002

- Emission Unit Information

 AQD Emissions Unit ID: CSH002
 Emission Unit Type: Crushing/Screening/Handling
 Type of Unit: Screening
 Maximum Annual Throughput: 3153600 Units: tons/yr
 Model Name and Number: XXX
 AQD Description: PA-5 Sesqui Plant Ore Screening Vent
 Company Equipment ID: PA-5
 Company Equipment Description: PA-5 Sesqui Plant Ore Screening Vent
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1964
 Initial Operation Commencement Date: 01/01/1964
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>screen</td>
<td>1</td>
<td>01/01/1981</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC002
 Process Name:
 Company Process Description: Process for PA5
 Source Classification Code (SCC): 3-01-021-03

 Control equipment(s) directly associated with this process

 WSC016
- **Emission Unit Information**

 AQD Emissions Unit ID: CSH003
 Emission Unit Type: Crushing/Screening/Handling
 Type of Unit: Material Handling
 Maximum Annual Throughput: 5694000 Units: tons/yr
 Model Name and Number: XXX
 AQD Description: RA-33 Sesqui Silo Storage Vent
 Company Equipment ID: RA-33
 Company Equipment Description: RA-33 Sesqui Silo Storage Vent
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>vent</td>
<td>1</td>
<td>01/01/1972</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC016
 Process Name:
 Company Process Description: Process for MONO2
 Source Classification Code (SCC): 3-01-021-03

 Control equipment(s) directly associated with this process
 WSC017
Facility Detail Report (F000349): Westvaco Facility

Emission Unit : CSH004

Aug 10 2015, 08:15:36

- **Emission Unit Information**

 AQD Emissions Unit ID: CSH004

 Emission Unit Type: Crushing/Screening/Handling

 Type of Unit: Material Handling

 Maximum Annual Throughput: 6132000 Units: tons/yr

 Model Name and Number: scrubber

 AQD Description: Mono-3 Mono Ore Distribution

 Company Equipment ID: Mono-3

 Company Equipment Description: Mono-3 Mono Ore Distribution

 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1972

 Initial Operation Commencement Date: 01/01/1972

 Most Recent Construction/Modification Commencement Date:

 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>scrubber</td>
<td>1</td>
<td>01/01/1972</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC017

 Process Name:

 Company Process Description: Process for MONO3

 Source Classification Code (SCC): 3-01-021-24

 Control equipment(s) directly associated with this process

 WSC018
Facility Detail Report (F000349): Westvaco Facility

- **Emission Unit Information**

 - AQD Emissions Unit ID: CSH005
 - Emission Unit Type: Crushing/Screening/Handling
 - Type of Unit: Crushing
 - Maximum Annual Throughput: 12226400 Units: tons/yr
 - Model Name and Number: XXX
 - AQD Description: Mono Secondary Crusher
 - Company Equipment ID: Mono-4
 - Company Equipment Description: Mono secondary crusher
 - Operating Status: Operating
 - Initial Construction Commencement Date: 01/01/1972
 - Initial Operation Commencement Date: 01/01/1972

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>crusher</td>
<td>1</td>
<td>01/01/1972</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 - Process ID: PRC018
 - Process Name:
 - Company Process Description: Process for MONO4
 - Source Classification Code (SCC): 3-01-021-03

 Control equipment(s) directly associated with this process

 WSC019
- **Emission Unit Information**

 AQD Emissions Unit ID: CSH006
 Emission Unit Type: Crushing/Screening/Handling
 Type of Unit: Material Handling
 Maximum Annual Throughput: 6132000 Units: tons/yr
 Model Name and Number: XXX
 AQD Description: Mono-11 Mono Dual Ore Reclalm
 Company Equipment ID: Mono-11
 Company Equipment Description: Mono-11 Mono Dual Ore Reclalm
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1990
 Initial Operation Commencement Date: 01/01/1990
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>reclaim</td>
<td>1</td>
<td>01/01/1990</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC024
 Process Name:
 Company Process Description: Process for MONO11
 Source Classification Code (SCC): 3-01-021-03

 Control equipment(s) directly associated with this process

 WSC020
- **Emission Unit Information**

 AQD Emissions Unit ID: CSH007

 Emission Unit Type: Crushing/Screening/Handling

 Type of Unit: Screening

 Maximum Annual Throughput: 7008000 Units: tons/yr

 Model Name and Number: XXX

 AQD Description: R-5 Sesqui Fluid Bed Calciner (RA-25)

 Company Equipment ID: Mono-12

 Company Equipment Description: MONO-12 Mono Loadout Screening

 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1995

 Initial Operation Commencement Date: 01/01/1995

 Most Recent Construction/Modification Commencement Date:

 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>screen</td>
<td>1</td>
<td>01/01/1996</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC025

 Process Name:

 Company Process Description: Process for MONO12

 Source Classification Code (SCC): 3-01-021-27

 Control equipment(s) directly associated with this process

 BAG003
Emission Unit Information

- AQD Emissions Unit ID: CSH008
- Emission Unit Type: Crushing/Screening/Handling
 - Type of Unit: Crushing
- Maximum Annual Throughput: 2409000 tons/yr
- Model Name and Number: XXX
- AQD Description: NS-4 Mono Secondary Crusher Scrubber
- Company Equipment ID: NS-4
- Company Equipment Description: NS-4 Mono Secondary Crusher Scrubber
- Operating Status: Operating
- Initial Construction Commencement Date: 01/01/1975
- Initial Operation Commencement Date: 01/01/1975
- Most Recent Construction/Modification Commencement Date:
- Most Recent Operation Commencement Date:

Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>crusher</td>
<td>1</td>
<td>01/01/1975</td>
</tr>
</tbody>
</table>

Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Processes

- **Emission Process Information**

 - Process ID: PRC027
 - Process Name:
 - Company Process Description: Process for NS4
 - Source Classification Code (SCC): 3-01-021-03

 Control equipment(s) directly associated with this process

 WSC021
- **Emission Unit Information**

 - AQD Emissions Unit ID: CSH009
 - Emission Unit Type: Crushing/Screening/Handling
 - Type of Unit: Material Handling
 - Maximum Annual Throughput: 80000 tons/yr
 - Model Name and Number: baghouse
 - AQD Description: Bicarb Product Handling
 - Company Equipment ID: BC-2
 - Company Equipment Description: BC-2 Bicarb Product Handling
 - Operating Status: Operating
 - Initial Construction Commencement Date: 01/01/1990
 - Initial Operation Commencement Date: 01/01/1990
 - Most Recent Construction/Modification Commencement Date:
 - Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>baghouse</td>
<td>1</td>
<td>01/01/1990</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 - Process ID: PRC037
 - Process Name:
 - Company Process Description: Process for BC2
 - Source Classification Code (SCC): 3-01-038-01

 Control equipment(s) directly associated with this process

 BAG004
Emission Unit: CSH010

- **Emission Unit Information**

 AQD Emissions Unit ID: CSH010
 Emission Unit Type: Crushing/Screening/Handling
 Type of Unit: Material Handling
 Maximum Annual Throughput: 142788 Units: tons/yr
 Model Name and Number: XXX
 AQD Description: RD-3 Lime Slaker Vent
 Company Equipment ID: RD-3
 Company Equipment Description: RD-3 Lime Slaker Vent
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1983
 Initial Operation Commencement Date: 01/01/1983

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>vent</td>
<td>1</td>
<td>01/01/1981</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC047
 Company Process Description: Process for RD3

 Control equipment(s) directly associated with this process

 WSC022
Emission Unit : CSH011

- Emission Unit Information

 AQD Emissions Unit ID: CSH011
 Emission Unit Type: Crushing/Screening/Handling
 Type of Unit: Material Handling
 Maximum Annual Throughput: 2350000 Units: tons/yr
 Model Name and Number: XXX
 AQD Description: Mine Water Housekeeping
 Company Equipment ID: MW-4
 Company Equipment Description: MW-4 - Mine Water Housekeeping
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1993
 Initial Operation Commencement Date: 01/01/1993

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>TBD</td>
<td>01/01/1972</td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC032
 Process Name:
 Company Process Description: Process for MW4
 Source Classification Code (SCC): 3-01-021-22

 Control equipment(s) directly associated with this process

 BAG005
Emission Unit : CSH012

- **Emission Unit Information**

 AQD Emissions Unit ID: CSH012
 Emission Unit Type: Crushing/Screening/Handling
 Type of Unit: Material Handling
 Maximum Annual Throughput: 380880 Units: tons/yr
 Model Name and Number: XXX
 AQD Description: Mono Power Housekeeping
 Company Equipment ID: NS-2A
 Company Equipment Description: mono powerhouse housekeeping
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1975
 Initial Operation Commencement Date: 01/01/1975
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>TBD</td>
<td>01/01/1975</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Processes**

- **Emission Process Information**

 Process ID: PRC044
 Process Name: mono power houskeeping
 Company Process Description: Process for NS2A
 Source Classification Code (SCC): 3-05-102-03

 Control equipment(s) directly associated with this process

 BAG001
Emission Unit Information

- **AQD Emissions Unit ID:** CSH013
- **Emission Unit Type:** Crushing/Screening/Handling
- **Type of Unit:** Crushing
- **Maximum Annual Throughput:** 6132000 Units: tons/yr
- **Model Name and Number:** XXX
- **AQD Description:**
- **Company Equipment ID:** MONO-2
- **Company Equipment Description:** MONO-2 Primary Crusher
- **Operating Status:** Operating
- **Initial Construction Commencement Date:** 01/01/1972
- **Initial Operation Commencement Date:** 01/01/1972
- **Most Recent Construction/Modification Commencement Date:**
- **Most Recent Operation Commencement Date:**

Serial Number Tracking

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX</td>
<td>1</td>
<td>01/01/1972</td>
</tr>
</tbody>
</table>

Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Processes

- **Emission Process Information**

 - **Process ID:** PRC075
 - **Process Name:** MONO-2 Primary Crusher
 - **Company Process Description:** Mono ore crushing
 - **Source Classification Code (SCC):** 3-01-021-21

 Control equipment(s) directly associated with this process

 WSC023
- **Emission Unit Information**

 AQD Emissions Unit ID: CSH014

 Emission Unit Type: Crushing/Screening/Handling

 Type of Unit: Material Handling

 Maximum Annual Throughput: 21900

 Units: tons/yr

 Model Name and Number: XXX

 AQD Description:

 Company Equipment ID: NS-10

 Company Equipment Description: Mono Power Flyash Silo

 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1988

 Initial Operation Commencement Date: 01/01/1988

 Most Recent Construction/Modification Commencement Date:

 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX</td>
<td>1</td>
<td>01/01/1988</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC078

 Process Name: NS-10

 Company Process Description: Mono Power Flyash Silo

 Control equipment(s) directly associated with this process

 BAG006
- **Emission Unit Information**

 AQD Emissions Unit ID: **CSH015**

 Emission Unit Type: **Crushing/Screening/Handling**

 Type of Unit: **Material Handling**

 Maximum Annual Throughput: 21900 Units: tons/yr

 Model Name and Number: **XXX**

 AQD Description:

 Company Equipment ID: **NS-11**

 Company Equipment Description: **Mono Power Flyash Truck Loading**

 Operating Status: **Operating**

 Initial Construction Commencement Date: 01/01/1988

 Initial Operation Commencement Date: 01/01/1988

 Most Recent Construction/Modification Commencement Date:

 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Manufacturer Name</th>
<th>Serial Number</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX</td>
<td>1</td>
<td>01/01/1988</td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: **PRC079**

 Process Name: **NS-10**

 Company Process Description: **Mono Power Flyash Truck Loading**

 Source Classification Code (SCC): 3-01-021-99

 Release points(s) directly associated with this process

 VER069
Facility Detail Report (F000349): Westvaco Facility

- Emission Unit Information

 AQD Emissions Unit ID: CTW001
 Emission Unit Type: Cooling Tower
 Drift Rate (%): 0.0 Total Dissolved Solids (ppm): 1.0000
 AQD Description: Sesqui Cooling Tower Cell 1
 Company Equipment ID: ct1
 Company Equipment Description: cooling tower
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1953
 Initial Operation Commencement Date: 01/01/1953
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes
 - Emission Process Information

 Process ID: PRC048
 Process Name:
 Company Process Description: Process for SESQCT1
 Source Classification Code (SCC): 3-85-001-10

 Release points(s) directly associated with this process

 VER048
- **Emission Unit Information**

 AQD Emissions Unit ID: CTW002
 Emission Unit Type: Cooling Tower
 Drift Rate (%): 0.0
 Total Dissolved Solids (ppm): 1.0000
 AQD Description: Sesqui Cooling Tower Cell 2
 Company Equipment ID: ct2
 Company Equipment Description: Sesqui Cooling Tower Cell 2
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1952
 Initial Operation Commencement Date: 01/01/1952
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC049
 Process Name:
 Company Process Description: Process for SESQCT2
 Source Classification Code (SCC): 3-85-001-10

 Release points(s) directly associated with this process

 VER049
Emission Unit Information

- **AQD Emissions Unit ID:** CTW003
- **Emission Unit Type:** Cooling Tower
- **Drift Rate (%):** 0.0
- **Total Dissolved Solids (ppm):** 1.0000
- **AQD Description:** Sesqui Cooling Tower Cell 3
- **Company Equipment ID:** ct3
- **Company Equipment Description:** Sesqui Cooling Tower Cell 3
- **Operating Status:** Operating
- **Initial Construction Commencement Date:** 01/01/1953
- **Initial Operation Commencement Date:** 01/01/1953
- **Most Recent Construction/Modification Commencement Date:**
- **Most Recent Operation Commencement Date:**

Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Processes

Emission Process Information

- **Process ID:** PRC050
- **Process Name:**
- **Company Process Description:** Process for SESQCT3
- **Source Classification Code (SCC):** 3-85-001-10

Release points(s) directly associated with this process

VER050
Emission Unit : CTW004

- **Emission Unit Information**

 AQD Emissions Unit ID: CTW004

 Emission Unit Type: Cooling Tower

 Drift Rate (%): 0.0
 Total Dissolved Solids (ppm): 1.0000

 AQD Description: Sesqui Cooling Tower Cell 4

 Company Equipment ID: ct4

 Company Equipment Description: Sesqui Cooling Tower Cell 4

 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1953

 Initial Operation Commencement Date: 01/01/1953

 Most Recent Construction/Modification Commencement Date:

 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC051

 Process Name:

 Company Process Description: Process for SESQCT4

 Source Classification Code (SCC): 3-85-001-10

 Release points(s) directly associated with this process

 VER051
Facility Detail Report (F000349): Westvaco Facility

- **Emission Unit Information**

 AQD Emissions Unit ID: CTW005
 Emission Unit Type: Cooling Tower
 Drift Rate (%): 0.0
 Total Dissolved Solids (ppm): 1.0000
 AQD Description: Monol Cooling Tower Cell 1
 Company Equipment ID: ct1
 Company Equipment Description: Monol Cooling Tower Cell 1
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC052
 Process Name:
 Company Process Description: Process for MONO1CT1
 Source Classification Code (SCC): 3-85-001-10

 Release points(s) directly associated with this process

 VER052
Facility Detail Report (F000349): Westvaco Facility

Emission Unit : CTW006

Emission Unit Information

- AQD Emissions Unit ID: CTW006
- Emission Unit Type: Cooling Tower
- Drift Rate (%): 0.0
- Total Dissolved Solids (ppm): 1.0000
- AQD Description: Mono1 Cooling Tower Cell 2
- Company Equipment ID: ct2
- Company Equipment Description: Mono1 Cooling Tower Cell 2
- Operating Status: Operating

Initial Construction Commencement Date: 01/01/1972
Initial Operation Commencement Date: 01/01/1972

Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Processes

- **Emission Process Information**

 - **Process ID:** PRC053
 - **Process Name:**
 - **Company Process Description:** Process for MONO1CT2
 - **Source Classification Code (SCC):** 3-85-001-10

 Release points(s) directly associated with this process

 VER053
Emission Unit Information

- AQD Emissions Unit ID: CTW007
- Emission Unit Type: Cooling Tower
 - Drift Rate (%): 0.0
 - Total Dissolved Solids (ppm): 1.0000
- AQD Description: Mono2 Cooling Tower Cell 1
- Company Equipment ID: ct1
- Company Equipment Description: Mono2 Cooling Tower Cell 1
- Operating Status: Operating

Initial Construction Commencement Date: 01/01/1972
Initial Operation Commencement Date: 01/01/1972

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes
 - Emission Process Information

 - Process ID: PRC054
 - Process Name:
 - Company Process Description: Process for MONO2CT1
 - Source Classification Code (SCC): 3-85-001-10

Release points(s) directly associated with this process

VER054
Emission Unit: CTW008

- Emission Unit Information

 AQD Emissions Unit ID: CTW008
 Emission Unit Type: Cooling Tower
 Drift Rate (%): 0.0
 Total Dissolved Solids (ppm): 1.0000
 AQD Description: Mono2 Cooling Tower Cell 2
 Company Equipment ID: ct2
 Company Equipment Description: Mono 2 cooling tower
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1975
 Initial Operation Commencement Date: 01/01/1975
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC055
 Process Name:
 Company Process Description: Process for MONO2CT2
 Source Classification Code (SCC): 3-85-001-10

 Release points(s) directly associated with this process

 VER055
Facility Detail Report (F000349): Westvaco Facility

Emission Unit Information

AQD Emissions Unit ID: CTW009
Emission Unit Type: Cooling Tower

Drift Rate (%): 0.0
Total Dissolved Solids (ppm): 1.0000

AQD Description: Mono-2 Cooling Tower Cell 3
Company Equipment ID: ct3
Company Equipment Description: Mono-2 Cooling Tower Cell 3
Operating Status: Operating

Initial Construction Commencement Date: 01/01/1975
Initial Operation Commencement Date: 01/01/1975

Most Recent Construction/Modification Commencement Date:
Most Recent Operation Commencement Date:

Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Processes

Emission Process Information

Process ID: PRC056
Process Name:
Company Process Description: Process for MONO2CT3
Source Classification Code (SCC): 3-85-001-10

Release points(s) directly associated with this process

VER056
Emission Unit : ENG001

- Emission Unit Information

 AQD Emissions Unit ID: ENG001
 Emission Unit Type: Engine
 Name Plate Rating: 890.00 Units: hp
 Site Rating: 715.00 Units: hp
 Primary Fuel Type: Diesel
 Secondary Fuel Type: N/A
 Model Name and Number: Caterpillar 3412 CDITA
 Engine: Compression Ignition

 AQD Description:
 Company Equipment ID: EG-1
 Company Equipment Description: Caustic emergency generator
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1991
 Initial Operation Commencement Date: 01/01/1991

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Manufacturer Name</th>
<th>Construction/Installation Commencement Date</th>
<th>Operation Commence-Start-up Date</th>
<th>Order Date</th>
<th>Manufacture Date</th>
<th>Shutdown Date</th>
<th>Removal Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>81210060</td>
<td>Caterpillar</td>
<td>01/01/1991</td>
<td>01/01/1991</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC081
 Process Name: EG-1
 Company Process Description: Emergency Generator
 Source Classification Code (SCC): 2-02-001-02

 Release points(s) directly associated with this process

 VER070
Emission Unit : ENG002

- Emission Unit Information

 AQD Emissions Unit ID: ENG002
 Emission Unit Type: Engine
 Name Plate Rating: 575.00
 Units: hp
 Site Rating: 460.00
 Units: hp
 Primary Fuel Type: Diesel
 Secondary Fuel Type: N/A
 Model Name and Number: Caterpillar 3412 DIT
 Engine: Compression Ignition
 AQD Description:
 Company Equipment ID: EG-2
 Company Equipment Description: EG-2 Mono Tailings Emergency Generator
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1975
 Initial Operation Commencement Date: 01/01/1975

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Manufacturer Name</th>
<th>Construction/Installation Commencement Date</th>
<th>Operation Commencement/Start-up Date</th>
<th>Order Date</th>
<th>Manufacture Date</th>
<th>Shutdown Date</th>
<th>Removal Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>38S15400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC082
 Process Name: EG-2
 Company Process Description: Mono Tailings Emergency Generator
 Source Classification Code (SCC): 2-02-001-02

 Release points(s) directly associated with this process

 VER071
- Emission Unit Information

 AQD Emissions Unit ID: ENG003
 Emission Unit Type: Engine
 Name Plate Rating: 255.00 Units: hp
 Site Rating: 205.00 Units: hp
 Primary Fuel Type: Diesel
 Secondary Fuel Type: N/A
 Model Name and Number: Cummins NT-855-F1
 Engine: Compression Ignition
 AQD Description:
 Company Equipment ID: EG-3
 Company Equipment Description: EG-3 Sesqui Emergency Fire Pump
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1977
 Initial Operation Commencement Date: 01/01/1977
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Serial Number Tracking

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Manufacturer</th>
<th>Construction/Installation Commencement Date</th>
<th>Operation Commencement/Start-up Date</th>
<th>Order Date</th>
<th>Manufacture Date</th>
<th>Shutdown Date</th>
<th>Removal Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>10598480</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC083
 Process Name: EG-3
 Company Process Description: Sesqui Emergency Fire Pump
 Source Classification Code (SCC): 2-02-001-02

 Release points(s) directly associated with this process

 VER072
- **Emission Unit Information**

 AQD Emissions Unit ID: ENG004
 Emission Unit Type: Engine
 Name Plate Rating: 2814.00 Units: hp
 Site Rating: 2628.00 Units: hp
 Primary Fuel Type: Diesel
 Model Name and Number: Cummins Wartsila CW 270
 AQD Description:
 Company Equipment ID: EG-8
 Company Equipment Description: EG-8 8 Shaft Emergency Generator
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/2008
 Initial Operation Commencement Date: 01/01/2008
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Serial Number Tracking**

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Manufacturer</th>
<th>Construction/Installation Commencement Date</th>
<th>Operation Commencement/Start-up Date</th>
<th>Order Date</th>
<th>Manufacture Date</th>
<th>Shutdown Date</th>
<th>Removal Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>66300105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC084
 Process Name: EG-8
 Company Process Description: 8 Shaft Emergency Generator
 Source Classification Code (SCC): 2-02-001-02

 Release points(s) directly associated with this process

 VER073
Emission Unit : FUG001

- Emission Unit Information

 AQD Emissions Unit ID: FUG001
 Emission Unit Type: Fugitive
 AQD Description: Mono Stockpile Reclaim
 Company Equipment ID: Mono-8
 Company Equipment Description: Mono-8 Mono Stockpile Reclaim scrubber
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1978
 Initial Operation Commencement Date: 01/01/1978
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC021
 Company Process Description: Process for MON08
 Source Classification Code (SCC): 3-01-021-24

 Release points(s) directly associated with this process

 VER021
- **Emission Unit Information**

 AQD Emissions Unit ID: FUG002
 Emission Unit Type: Fugitive
 AQD Description: Coal Pile Emissions (dozing, etc.)
 Company Equipment ID: Coal Pile
 Company Equipment Description: Mono power coal stockpile
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1975
 Initial Operation Commencement Date: 01/01/1975
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC063
 Process Name:
 Company Process Description: Process for COALPILE
 Source Classification Code (SCC): 3-05-103-98

 Release points(s) directly associated with this process

 AVL002
- Emission Unit Information

 AQD Emissions Unit ID: FUG003
 Emission Unit Type: Fugitive
 AQD Description: Coal Pile Wind Erosion
 Company Equipment ID: Coal Pile
 Company Equipment Description: Coal Pile
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC064
 Process Name:
 Company Process Description: Process for COALWE
 Source Classification Code (SCC): 3-05-103-98

 Release points(s) directly associated with this process

 AVL003
- **Emission Unit Information**

 AQD Emissions Unit ID: FUG004
 Emission Unit Type: Fugitive
 AQD Description: Mono Plant Ore Stockpile
 Company Equipment ID: MONOPILE
 Company Equipment Description: Mono Plant Ore Stockpile handling activities
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 Emission Process Information

 Process ID: PRC065
 Process Name:
 Company Process Description: Process for MONOPILE
 Source Classification Code (SCC): 3-05-103-98

 Release points(s) directly associated with this process

 AVL004
Facility Detail Report (F000349): Westvaco Facility

- **Emission Unit Information**

 AQD Emissions Unit ID: FUG005
 Emission Unit Type: Fugitive
 AQD Description: Mono Plant Ore Stockpile
 Company Equipment ID: MONOWE
 Company Equipment Description: Mono Plant Ore Stockpile wind erosion
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC066
 Process Name:
 Company Process Description: Process for MONOWE
 Source Classification Code (SCC): 3-05-103-98

 Release points(s) directly associated with this process

 AVL005
Emission Unit: FUG006

- Emission Unit Information
 - AQD Emissions Unit ID: FUG006
 - Emission Unit Type: Fugitive
 - AQD Description: Plant Mobile Source Tailpipe - Mobile equipment emissions
 - Company Equipment ID: Mobile
 - Company Equipment Description: Mobile equipment emissions
 - Operating Status: Operating
 - Initial Construction Commencement Date: 01/01/1972
 - Initial Operation Commencement Date: 01/01/1972
 - Most Recent Construction/Modification Commencement Date:
 - Most Recent Operation Commencement Date:

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes
 - Emission Process Information
 - Process ID: PRC067
 - Company Process Description: Process for PLANTMBL
 - Source Classification Code (SCC): 3-05-103-98
 - Release points(s) directly associated with this process
 - AVL006
- **Emission Unit Information**

 AQD Emissions Unit ID: FUG007
 Emission Unit Type: Fugitive
 AQD Description: Sesqui Plant Ore Stockpile
 Company Equipment ID: SESQUIPILE
 Company Equipment Description: Sesqui Plant Ore Stockpile handling activities
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1953
 Initial Operation Commencement Date: 01/01/1953
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC068
 Process Name: SESQUIPILE
 Company Process Description: Sesqui ore pile handling
 Source Classification Code (SCC): 3-05-103-98

 Release points(s) directly associated with this process

 AVL007
Emission Unit Information

AQD Emissions Unit ID: FUG008
Emission Unit Type: Fugitive
AQD Description: Sesqui Plant Railcar Load Out
Company Equipment ID: SESQUILOAD
Company Equipment Description: Sesqui Plant Railcar Load Out
Operating Status: Operating

Initial Construction Commencement Date: 01/01/1953
Initial Operation Commencement Date: 01/01/1953

Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Processes

- Emission Process Information

 Process ID: PRC069
 Process Name: SESQUILOAD
 Company Process Description: Sesqui Product Loadout
 Source Classification Code (SCC): 3-05-103-98

Release points(s) directly associated with this process

AVL008
Facility Detail Report (F000349): Westvaco Facility

Emission Unit : FUG009

Aug 10 2015, 08:15:36

- Emission Unit Information

 AQD Emissions Unit ID: FUG009

 Emission Unit Type: Fugitive

 AQD Description: Sesqui Pile Wind Erosion

 Company Equipment ID: SESQUWE

 Company Equipment Description: Sesqui ore stockpile wind erosion

 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1953

 Initial Operation Commencement Date: 01/01/1953

 Most Recent Construction/Modification Commencement Date:

 Most Recent Operation Commencement Date:

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC070

 Process Name: SESQWE

 Company Process Description: Process for Sesqui stockpile wind erosion

 Source Classification Code (SCC): 3-05-103-98

 Release points(s) directly associated with this process

 AVL009
Emission Unit: FUG010

- **Emission Unit Information**

 AQD Emissions Unit ID: FUG010
 Emission Unit Type: Fugitive
 AQD Description: Area and Road Fugitives
 Company Equipment ID: WIND/ROAD
 Company Equipment Description: Fugitives from general plant area and road
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC074
 Process Name: Facility Road Emissions
 Company Process Description: WIND/ROAD
 Source Classification Code (SCC): 3-05-888-01
- **Emission Unit Information**

 AQD Emissions Unit ID: HET001
 Emission Unit Type: Heater/Chiller
 Firing Type: Direct
 Heat Input Rating: 30.0
 Units: MMBtu/hr
 Primary Fuel Type: Pipeline Grade Natural Gas
 Secondary Fuel Type: N/A
 Heat Content of Fuel (BTU/scf): 1020
 AQD Description: Mine Air Heaters
 Company Equipment ID: MINEHTRS
 Company Equipment Description: Mine air heaters
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC073
 Process Name:
 Company Process Description: MNHTRS
 Source Classification Code (SCC): 1-05-001-06

 Release points(s) directly associated with this process

 VER063
- **Emission Unit Information**

 AQD Emissions Unit ID: LUD001

 Emission Unit Type: Loading/Unloading/Dump

 Type of Material: solid

 Material Description: particulate

 Maximum Annual Throughput: 525600 Units: tons/yr

 AQD Description: Sesqui Bagging

 Company Equipment ID: RA-28

 Company Equipment Description: RA-28 Sesqui bagging

 Operating Status: Operating

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC013

 Process Name:

 Company Process Description: Process for RA28

 Source Classification Code (SCC): 3-01-021-22

 Release points(s) directly associated with this process

 VER013
- **Emission Unit Information**

 AQD Emissions Unit ID: LUD002
 Emission Unit Type: Loading/Unloading/Dump
 Type of Material: solid
 Material Description: soda ash product
 Maximum Annual Throughput: 5694000 tons/yr
 AQD Description: RA-33 Sesqui Silo Storage Vent
 Company Equipment ID: RA-33
 Company Equipment Description: RA-33 Sesqui Silo Storage Vent
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC015
 Process Name:
 Company Process Description: Process for RA33
 Source Classification Code (SCC): 3-01-021-22

 Release points(s) directly associated with this process

 VER015
Facility Detail Report (F000349): Westvaco Facility

Emission Unit : LUD003

Emission Unit Information

- **AQD Emissions Unit ID:** LUD003
- **Emission Unit Type:** Loading/Unloading/Dump
- **Type of Material:** solid
- **Material Description:** soda ash product
- **Maximum Annual Throughput:** 3285000 units/yr
- **AQD Description:** Mono-9 Mono Railcar Loadout
- **Company Equipment ID:** Mono-9
- **Company Equipment Description:** Mono-9 Mono Railcar Loadout
- **Operating Status:** Operating
- **Initial Construction Commencement Date:** 01/01/1995
- **Initial Operation Commencement Date:** 01/01/1995

Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Processes

- **Emission Process Information**

 - **Process ID:** PRC022
 - **Process Name:**
 - **Company Process Description:** Process for MONO9
 - **Source Classification Code (SCC):** 3-01-021-22

 Release points(s) directly associated with this process

 VER022
- Emission Unit Information

 AQD Emissions Unit ID: LUD004
 Emission Unit Type: Loading/Unloading/Dump
 Type of Material: solid
 Material Description: soda ash
 Maximum Annual Throughput: 876000 Units: tons/yr

 AQD Description: Mono Bulk Truck Loadout
 Mono-10 Mono Bulk Truck Loadout
 Company Equipment ID: Mono-10
 Company Equipment Description: Mono-10 Mono Bulk Truck Loadout
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1995
 Initial Operation Commencement Date: 01/01/1995

 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC023
 Process Name:
 Company Process Description: Process for MON010
 Source Classification Code (SCC): 3-01-021-22

 Release points(s) directly associated with this process

 VER023
- Emission Unit Information

 AQD Emissions Unit ID: LUD006
 Emission Unit Type: Loading/Unloading/Dump
 Type of Material: solid
 Material Description: locomotive emissions
 Maximum Annual Throughput: 1 Units: tons/yr
 AQD Description: Rail Traffic Switching
 Company Equipment ID: Rail
 Company Equipment Description: Rail Traffic Switching
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1975
 Initial Operation Commencement Date: 01/01/1975
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Permitted Emissions

- Processes

 - Emission Process Information

 Process ID: PRC062
 Process Name:
 Company Process Description: Process for RAIL
 Source Classification Code (SCC): 3-01-021-22

 Release points(s) directly associated with this process
 AVL001
- **Emission Unit Information**

 AQD Emissions Unit ID: LUD007
 Emission Unit Type: Loading/Unloading/Dump
 Type of Material: solid
 Material Description: sodium decahydrate crystals
 Maximum Annual Throughput: 90000
 Units: tons/yr

 AQD Description:
 Company Equipment ID: DECAMINING
 Company Equipment Description: Mining deca shelves on evap lake
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/2004
 Initial Operation Commencement Date: 01/01/2004

 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC080
 Process Name: DECAMINING
 Company Process Description: Mining deca shelves on evap lake
 Source Classification Code (SCC): 3-01-021-23

 Release points(s) directly associated with this process

 AVL010
Emission Unit : SEB001

- Emission Unit Information

 AQD Emissions Unit ID: SEB001
 Emission Unit Type: Spray Booth/Electroplating/Sand Blasting
 Unit Type: Spray Booth
 Unit Description: Spray booth
 AQD Description: Sodium Carbonate Scrubber
 Company Equipment ID: na
 Company Equipment Description: Plant malfunction
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

- Emission Process Information

 Process ID: PRC071
 Process Name:

 Company Process Description: Sodium Carbonate Scrubber
 Source Classification Code (SCC): 3-05-999-99

 Release points(s) directly associated with this process

 VER062
- **Emission Unit Information**

 AQD Emissions Unit ID: TNK001
 Emission Unit Type: Storage Tank/Silo
 Material Type: Solid
 Description of Material Stored: lime

 Capacity: 1 tons
 Maximum Throughput: 65700.0000 tons/yr
 AQD Description: MW-1 Lime Silo
 Company Equipment ID: MW-1
 Company Equipment Description: MW-1 Lime Silo
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1995
 Initial Operation Commencement Date: 01/01/1995
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC029
 Process Name:
 Company Process Description: Process for MW1

 Release points(s) directly associated with this process

 VER029
- **Emission Unit Information**

 AQD Emissions Unit ID: TNK002

 Emission Unit Type: Storage Tank/Silo

 Material Type: Solid

 Description of Material Stored: solid material

 Capacity: 1 Units: tons

 Maximum Throughput: 105120.0000 Units: tons/yr

 AQD Description: ELDM Perlite Precoat Silo

 MW-2 Perlite Precoat Silo

 Company Equipment ID: MW-2

 Company Equipment Description: perlite precoat silo

 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1995

 Initial Operation Commencement Date: 01/01/1995

 Most Recent Construction/Modification Commencement Date:

 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC030

 Process Name:

 Company Process Description: Process for MW2

 Source Classification Code (SCC): 3-01-021-99

 Release points(s) directly associated with this process

 VER030
- **Emission Unit Information**

 AQD Emissions Unit ID: TNK003
 Emission Unit Type: Storage Tank/Silo
 Material Type: Solid
 Description of Material Stored: soda ash
 Capacity: 1
 Units: gallons
 Maximum Throughput: 2190000.0000
 Units: tons/yr
 AQD Description: NS-2B Mono Powerhouse Housekeeping baghouse
 Company Equipment ID: NS-2B
 Company Equipment Description: NS-2B Mono Powerhouse Housekeeping baghouse
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1975
 Initial Operation Commencement Date: 01/01/1975
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC034
 Process Name:
 Company Process Description: Process for NS2B
 Source Classification Code (SCC): 3-05-102-03

 Release points(s) directly associated with this process

 VER034
Emission Unit : VNT001

- Emission Unit Information

 AQD Emissions Unit ID: VNT001
 Emission Unit Type: Process Vent
 AQD Description: PA-6 Sesqui Plant Dissolver Vent
 Company Equipment ID: PA-6
 Company Equipment Description: PA-6 Sesqui Plant Dissolver Vent
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1966
 Initial Operation Commencement Date: 01/01/1966

 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC003
 Process Name:
 Company Process Description: Process for PA6
 Source Classification Code (SCC): 3-01-021-08

 Release points(s) directly associated with this process

 VER003
Emission Unit Information

AQS Emissions Unit ID: VNT002
Emission Unit Type: Process Vent
AQS Description: PA-7 Sesqui Plant Dissolver Vent
Company Equipment ID: PA-7
Company Equipment Description: PA-7 Sesqui Plant Dissolver Vent
Operating Status: Operating

Initial Construction Commencement Date: 01/01/1963
Initial Operation Commencement Date: 01/01/1963

Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Processes

Emission Process Information

Process ID: PRC004
Process Name:
Company Process Description: Process for PA7
Source Classification Code (SCC): 3-01-021-08

Release points(s) directly associated with this process

VER004
Facility Detail Report (F000349): Westvaco Facility

Emission Unit : VNT003

Aug 10 2015, 08:15:36

- **Emission Unit Information**

 AQD Emissions Unit ID: VNT003
 AQD Description: PA-8 Sesqui Plant Dissolver Vent
 Company Equipment ID: PA-8
 Company Equipment Description: PA-8 Sesqui Plant Dissolver Vent
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1953
 Initial Operation Commencement Date: 01/01/1953

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC005
 Process Name:
 Company Process Description: Process for PA8
 Source Classification Code (SCC): 3-01-021-08

 Release points(s) directly associated with this process

 VER005
- Emission Unit Information

 AQD Emissions Unit ID: VNT004
 Emission Unit Type: Process Vent
 AQD Description: Sesqui Plant Dissolver Vent
 Company Equipment ID: PA-9
 Company Equipment Description: PA-9 Sesqui Plant Dissolver Vent
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/1953
 Initial Operation Commencement Date: 01/01/1953
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC006
 Process Name:
 Company Process Description: Process for PA9
 Source Classification Code (SCC): 3-01-021-08

 Release points(s) directly associated with this process

 VER006
- Emission Unit Information

 AQD Emissions Unit ID: VNT005
 Emission Unit Type: Process Vent
 AQD Description: Mine Vent 2
 Company Equipment ID: Mine Vent 2
 Company Equipment Description: Mine Vent 2
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRC057
 Process Name:
 Company Process Description: Process for MINVENT2
 Source Classification Code (SCC): 3-01-021-23

 Release points(s) directly associated with this process
 VER057
- **Emission Unit Information**

 AQD Emissions Unit ID: VNT006
 Emission Unit Type: Process Vent
 AQD Description: Mine Vent 3
 Company Equipment ID: Mine Vent 3
 Company Equipment Description: Mine Vent 3
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1975
 Initial Operation Commencement Date: 01/01/1975

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC058
 Process Name:
 Company Process Description: Process for MINVENT3
 Source Classification Code (SCC): 3-01-021-23

 Release points(s) directly associated with this process

 VER058
- **Emission Unit Information**

 AQD Emissions Unit ID: VNT007
 Emission Unit Type: Process Vent
 AQD Description: Mine Vent 4
 Company Equipment ID: Mine Vent 4
 Company Equipment Description: Mine vent 4
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 - **Emission Process Information**

 Process ID: PRC059
 Process Name:
 Company Process Description: Process for MINVENT4
 Source Classification Code (SCC): 3-01-021-23

 Release points(s) directly associated with this process

 VER059
- **Emission Unit Information**

 AQD Emissions Unit ID: VNT008
 Emission Unit Type: Process Vent
 AQD Description: Mine Vent 9
 Company Equipment ID: Mine Vent 9
 Company Equipment Description: Mine vent number 9
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1975
 Initial Operation Commencement Date: 01/01/1975

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**
 - **Emission Process Information**

 Process ID: PRC061
 Process Name:
 Company Process Description: Process for MINVENT9
 Source Classification Code (SCC): 3-01-021-23

 Release points(s) directly associated with this process

 VER061
Facility Detail Report (F000349): Westvaco Facility

- Emission Unit Information

 AQD Emissions Unit ID: VNT009
 Emission Unit Type: Process Vent
 AQD Description: Mine Vent 6
 Company Equipment ID: Mine Vent 6
 Company Equipment Description: Mine Vent 6
 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1972
 Initial Operation Commencement Date: 01/01/1972
 Most Recent Construction/Modification Commencement Date:
 Most Recent Operation Commencement Date:

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes
 - Emission Process Information

 Process ID: PRC060
 Process Name:
 Company Process Description: Process for MINVENT6
 Source Classification Code (SCC): 3-85-001-10

 Release points(s) directly associated with this process

 VER060
- **Emission Unit Information**

 AQD Emissions Unit ID: VNT010

 Emission Unit Type: Process Vent

 AQD Description: MW-6

 Company Equipment ID: MW-6

 Company Equipment Description: MW-6 H2S Scrubber/CO2 Stripping System

 Operating Status: Operating

 Initial Construction Commencement Date: 01/01/1972

 Initial Operation Commencement Date: 01/01/1972

 Most Recent Construction/Modification Commencement Date:

 Most Recent Operation Commencement Date:

- **Permitted Emissions**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- **Processes**

 Emission Process Information

 Process ID: PRC076

 Process Name: MW-6

 Company Process Description: H2S scrubber/CO2 stripping system

 Source Classification Code (SCC): 3-01-021-10

 Control equipment(s) directly associated with this process

 WSC024
Emission Unit: VNT011

- Emission Unit Information

 AQD Emissions Unit ID: VNT011
 Emission Unit Type: Process Vent
 AQD Description:
 Company Equipment ID: MW-7
 Company Equipment Description: Longwall Water Project H2S vent
 Operating Status: Operating
 Initial Construction Commencement Date: 01/01/2008
 Initial Operation Commencement Date: 01/01/2008

- Permitted Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Potential Emissions (Lbs/hour)</th>
<th>Potential Emissions (Tons/Year)</th>
<th>Allowable Emissions (Lbs/Hour)</th>
<th>Allowable Emissions (Tons/Year)</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Processes

 - Emission Process Information

 Process ID: PRCQ77
 Process Name: MW-7
 Company Process Description: LWW H2S vent
 Source Classification Code (SCC): 3-01-021-99

 Release points(s) directly associated with this process

 VER067
- **Control Equipment Information**

 Equipment Type: Filter/Baghouse
 Control Equipment ID: BAG001
 AQD Description: Mono Power Housekeeping Baghouse
 Company Control Equipment ID: NS-2A
 Company Control Equipment Description: Mono Power Housekeeping Baghouse
 Operating Status: Operating
 Initial Installation Date: 01/01/1975
 Manufacturer: Flexkleen
 Model: Model 100-RA-48KD

- **Specific Equipment Type Information**

 Filter/Baghouse Type: Pulse Jet
 Pressure Type: negative
 Fabric Cleaning Mechanism: pulse air
 Operating Pressure Drop Range: 2
 Lime Injection/fabric Coating Agent: No
 Lime Injection/Fabric Coating Agent Type:
 Lime Injection/Fabric Coating Feed Rate - specify units:
 Bag Leak Detection System: No
 Inlet Gas Temp:
 Number of Bags: 100
 Sec. Outlet Gas Temp: 69
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 2567

- **Pollutants Controlled**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99.5</td>
<td>99.5</td>
<td>100</td>
<td>99.5</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>95</td>
<td>95</td>
<td>100</td>
<td>95</td>
</tr>
</tbody>
</table>

- **Associated Control Equipments And Release Points**

 Release points(s) directly associated with this control equipment

 VER044
Control Equipment : BAG002

- Control Equipment Information

 Equipment Type: Filter/Baghouse
 Control Equipment ID: BAG002
 AQD Description:
 Company Control Equipment ID: BC-1
 Company Control Equipment Description:
 Operating Status: Operating
 Initial Installation Date: 01/01/1990
 Manufacturer: Micropul
 Model: 340-S-TRH8

- Specific Equipment Type information

 Filter/Baghouse Type: Pulse Jet
 Pressure Type: negative
 Fabric Cleaning Mechanism: Pulse air
 Operating Pressure Drop Range: 2
 Lime Injection/fabric Coating Agent: No
 Lime Injection/Fabric Coating Agent Type:
 Lime Injection/Fabric Coating Feed Rate - specify units:
 Bag Leak Detection System: No
 Inlet Gas Temp:
 Number of Bags: 340
 Sec. Outlet Gas Temp: 171
 Inlet Gas Flow Rate: 11725
 Outlet Gas Flow Rate: 11725

- Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99.9</td>
<td>99.9</td>
<td>100</td>
<td>99.9</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
</tbody>
</table>

- Associated Control Equipments And Release Points

 Release points(s) directly associated with this control equipment

 VER036
- **Control Equipment Information**

 Equipment Type: Filter/Baghouse
 Control Equipment ID: BAG003
 AQD Description:
 Company Control Equipment ID: MONO-12
 Company Control Equipment Description:
 Operating Status: Operating
 Initial Installation Date: 01/01/1995
 Manufacturer: CPE
 Model: 120TNFW361C

- **Specific Equipment Type information**

 Filter/Baghouse Type: Reverse Air
 Pressure Type: negative
 Fabric Cleaning Mechanism: reverse air
 Operating Pressure Drop Range: 2
 Lime Injection/Fabric Coating Agent: No
 Lime Injection/Fabric Coating Agent Type:
 Lime Injection/Fabric Coating Feed Rate - specify units:
 Bag Leak Detection System: No
 Inlet Gas Temp:
 Number of Bags: 69
 Sec. Outlet Gas Temp: 69
 Inlet Gas Flow Rate: 19266
 Outlet Gas Flow Rate: 19266

- **Pollutants Controlled**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99.5</td>
<td>99.5</td>
<td>100</td>
<td>99.5</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>95</td>
<td>95</td>
<td>100</td>
<td>95</td>
</tr>
</tbody>
</table>

- **Associated Control Equipments And Release Points**

Release points(s) directly associated with this control equipment

VER025
- **Control Equipment Information**

 Equipment Type: Filter/Baghouse
 Control Equipment ID: BAG004
 AQD Description:
 Company Control Equipment ID: BC-2
 Company Control Equipment Description: Baghouse
 Operating Status: Operating
 Initial Installation Date: 01/01/1990
 Manufacturer: Micropul
 Model: 289-S-TRH8

- **Specific Equipment Type information**

 Filter/Baghouse Type: Pulse Jet
 Pressure Type: negative
 Fabric Cleaning Mechanism: pulse air
 Operating Pressure Drop Range: 2
 Lime Injection/fabric Coating Agent: No
 Lime Injection/Fabric Coating Agent Type:
 Lime Injection/Fabric Coating Feed Rate - specify units:
 Bag Leak Detection System: No
 Inlet Gas Temp:
 Number of Bags: 289
 Sec. Outlet Gas Temp:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 7528

- **Pollutants Controlled**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99.5</td>
<td>99.5</td>
<td>100</td>
<td>99.5</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>95</td>
<td>95</td>
<td>100</td>
<td>95</td>
</tr>
</tbody>
</table>

- **Associated Control Equipments And Release Points**

 Release points(s) directly associated with this control equipment

 VER037
Control Equipment : BAG005

Control Equipment Information

- Equipment Type: Filter/Baghouse
- Control Equipment ID: BAG005
- AQD Description:
- Company Control Equipment ID: MW-4
- Company Control Equipment Description: Baghouse
- Operating Status: Operating
- Initial Installation Date: 01/01/1993
- Manufacturer: CP Environmental
- Model: Model 100TNFW100C

Specific Equipment Type information

- Filter/Baghouse Type: Pulse Jet
- Pressure Type: negative
- Fabric Cleaning Mechanism: pulse air
- Operating Pressure Drop Range: 2
- Lime Injection/fabric Coating Agent: No

Lime Injection/Fabric Coating Agent Type:
- Lime Injection/Fabric Coating Feed Rate - specify units:
- Bag Leak Detection System: No
- Inlet Gas Temp: 68
- Number of Bags: 100
- Sec. Outlet Gas Temp: 68
- Inlet Gas Flow Rate: 4000
- Outlet Gas Flow Rate: 4000

Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99.5</td>
<td>99.5</td>
<td>100</td>
<td>99.5</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>95</td>
<td>95</td>
<td>100</td>
<td>95</td>
</tr>
</tbody>
</table>

Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER032
- Control Equipment Information

 Equipment Type: Filter/Baghouse
 Control Equipment ID: BAG006
 AQD Description:
 Company Control Equipment ID: NS–10
 Company Control Equipment Description: Mono Power Flyash Silo Baghouse
 Operating Status: Operating
 Initial Installation Date: 01/01/1988
 Manufacturer: Mikropul
 Model: Model 69–8–TRH

- Specific Equipment Type Information

 Filter/Baghouse Type: Pulse Jet
 Pressure Type: negative
 Fabric Cleaning Mechanism: Pulse air
 Operating Pressure Drop Range: 6
 Lime Injection/fabric Coating Agent: No
 Lime Injection/Fabric Coating Agent Type:
 Lime Injection/Fabric Coating Feed Rate - specify units:
 Bag Leak Detection System: No
 Inlet Gas Temp: 69
 Number of Bags:
 Sec. Outlet Gas Temp: 69
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 1570

- Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) – Filterable Portion Only</td>
<td>99.9</td>
<td>99.9</td>
<td>100</td>
<td>99.9</td>
</tr>
<tr>
<td>PM2.5 (FIL) – Filterable Portion Only</td>
<td>95</td>
<td>95</td>
<td>100</td>
<td>95</td>
</tr>
</tbody>
</table>

- Associated Control Equipments And Release Points

 Release points(s) directly associated with this control equipment

 VER068
Control Equipment Information

Equipment Type: Electrostatic Precipitator
Control Equipment ID: ESP001
AQD Description:
Company Control Equipment ID: NS-1A
Company Control Equipment Description:
Operating Status: Operating
Initial Installation Date: 08/01/1973
Manufacturer:
Model:

Specific Equipment Type Information

Precipitator Type: Dry
Number of Operating Fields:
Secondary Voltage Range: 1
Secondary Current Milliamps Range:
Inlet Gas Flow Rate:
Outlet Gas Flow Rate:

Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable</td>
<td>99.5</td>
<td>99.5</td>
<td>100</td>
<td>99.5</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable</td>
<td>95.0</td>
<td>95.0</td>
<td>100</td>
<td>95</td>
</tr>
</tbody>
</table>

Associated Control Equipments And Release Points

Control equipment(s) directly associated with this control equipment

WSC001
- **Control Equipment Information**

 Equipment Type: Electrostatic Precipitator
 Control Equipment ID: ESP002
 AQD Description:
 Company Control Equipment ID: NS–1B
 Company Control Equipment Description: Dry ESP
 Operating Status: Operating
 Initial Installation Date: 08/01/1973
 Manufacturer:
 Model:

- **Specific Equipment Type information**

 Precipitator Type: Dry
 Number of Operating Fields: 1
 Secondary Voltage Range: 1
 Secondary Current Milliamps Range:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate:

- **Pollutants Controlled**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99.5</td>
<td>99.5</td>
<td>100</td>
<td>99.5</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>95.0</td>
<td>95</td>
<td>100</td>
<td>95</td>
</tr>
</tbody>
</table>

- **Associated Control Equipments And Release Points**

 Control equipment(s) directly associated with this control equipment

 WSC002
Control Equipment : ESP003

- **Control Equipment Information**

 Equipment Type: Electrostatic Precipitator
 Control Equipment ID: ESP003
 AQD Description:
 Company Control Equipment ID: NS–3
 Company Control Equipment Description: Dry ESP
 Operating Status: Operating
 Initial Installation Date: 01/01/1975
 Manufacturer: Research Cottrell
 Model:

- **Specific Equipment Type Information**

 Precipitator Type: Dry
 Number of Operating Fields:
 Secondary Voltage Range: 1
 Secondary Current Milliamps Range:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 225900

- **Pollutants Controlled**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable</td>
<td>99.5</td>
<td>99.5</td>
<td>100</td>
<td>99.5</td>
</tr>
<tr>
<td>Portion Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable</td>
<td>95</td>
<td>95</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>Portion Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Associated Control Equipments And Release Points**

 Release points(s) directly associated with this control equipment

 VER026
Control Equipment : WSC001

- **Control Equipment Information**

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC001
 AQD Description:
 Company Control Equipment ID: NS-1A
 Company Control Equipment Description: FGD wet scrubber
 Operating Status: Operating
 Initial Installation Date: 08/01/1973
 Manufacturer:
 Model:

- **Specific Equipment Type information**

 Wet Scrubber Type: Spray Chamber
 Operating Pressure Drop Range: 1
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated:
 Scrubber Liquid Flow Rate:
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate:
 Inlet Gas Temp:
 Sec. Outlet Gas Temp:

- **Pollutants Controlled**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO2 – Sulfur Dioxide</td>
<td>80.0</td>
<td>80</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>

- **Associated Control Equipments And Release Points**

Release points(s) directly associated with this control equipment

VER033
Control Equipment : WSC002

- **Control Equipment Information**

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC002
 AQD Description:
 Company Control Equipment ID: NS-1B
 Company Control Equipment Description:
 Operating Status: Operating
 Initial Installation Date: 08/01/1973
 Manufacturer:
 Model:

- **Specific Equipment Type information**

 Wet Scrubber Type: Spray Chamber
 Operating Pressure Drop Range: 1
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated:
 Scrubber Liquid Flow Rate:
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate:
 Inlet Gas Temp:
 Sec. Outlet Gas Temp:

- **Pollutants Controlled**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO2 - Sulfur Dioxide</td>
<td>80.0</td>
<td>80</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>

- **Associated Control Equipments And Release Points**

 Release points(s) directly associated with this control equipment
 VER043
- **Control Equipment Information**

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC003
 AQD Description:
 Company Control Equipment ID: RA-1
 Company Control Equipment Description: Wet scrubber
 Operating Status: Operating
 Initial Installation Date: 01/01/1963

 Manufacturer:
 Model:

- **Specific Equipment Type information**

 Wet Scrubber Type: Venturi
 Operating Pressure Drop Range: 3.8
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated: Yes
 Scrubber Liquid Flow Rate: 39
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate: 8200
 Outlet Gas Flow Rate: 8200
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 172

- **Pollutants Controlled**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99.5</td>
<td>99.5</td>
<td>100</td>
<td>99.5</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90.0</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

- **Associated Control Equipments And Release Points**

Release points(s) directly associated with this control equipment

VER007
Control Equipment : WSC004

Control Equipment Information

- **Equipment Type:** Wet Scrubber
- **Control Equipment ID:** WSC004
- **AQD Description:**
- **Company Control Equipment ID:** RA-23A&B
- **Company Control Equipment Description:** R-13 wet scrubber
- **Operating Status:** Operating
- **Initial Installation Date:** 01/01/1964
- **Manufacturer:**
- **Model:**

Specific Equipment Type information

- **Wet Scrubber Type:** Venturi
- **Operating Pressure Drop Range:** 17
- **pH Range for Scrubbing Liquid:**
- **Scrubber Liquid Recirculated:**
- **Scrubber Liquid Flow Rate:** 207
- **Scrubber Liquid Supply Pressure:**
- **Inlet Gas Flow Rate:**
- **Outlet Gas Flow Rate:** 77000
- **Inlet Gas Temp:**
- **Sec. Outlet Gas Temp:** 180

Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable</td>
<td>99.5</td>
<td>99.5</td>
<td>100</td>
<td>99.5</td>
</tr>
<tr>
<td>PM10 (FIL) - Filterable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable</td>
<td>90.0</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER064
Control Equipment : WSC005

- Control Equipment Information

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC005
 AOD Description:
 Company Control Equipment ID: RA-23A
 Company Control Equipment Description: R-12 wet scrubber
 Operating Status: Operating
 Initial Installation Date: 01/01/1964
 Manufacturer:
 Model:

- Specific Equipment Type information

 Wet Scrubber Type: Venturi
 Operating Pressure Drop Range: 17
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated:
 Scrubber Liquid Flow Rate: 207
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 38500
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 180

- Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable</td>
<td>99.5</td>
<td>99.5</td>
<td>100</td>
<td>99.5</td>
</tr>
<tr>
<td>Portion Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable</td>
<td>90.0</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Portion Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Associated Control Equipments And Release Points

 Release points(s) directly associated with this control equipment

 VER008
Control Equipment : WSC006

- Control Equipment Information

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC006
 AQD Description:
 Company Control Equipment ID: RA-24
 Company Control Equipment Description:
 Operating Status: Operating
 Initial Installation Date: 01/01/1966
 Manufacturer: AAT
 Model: DTV-75K

- Specific Equipment Type information

 Wet Scrubber Type: Venturi
 Operating Pressure Drop Range: 35.4
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated: Yes
 Scrubber Liquid Flow Rate: 552
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 65000
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 147

- Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99.5</td>
<td>99.5</td>
<td>100</td>
<td>99.5</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90.0</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

- Associated Control Equipments And Release Points

 Release points(s) directly associated with this control equipment

 VER010
Control Equipment : WSC007

- **Control Equipment Information**

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC007
 AQD Description:
 Company Control Equipment ID: RA-25
 Company Control Equipment Description: Multi-vane wet scrubber
 Operating Status: Operating
 Initial Installation Date: 01/01/1969
 Manufacturer: Ducon
 Model: Multi-Vane Model II

- **Specific Equipment Type information**

 Wet Scrubber Type: Other
 Operating Pressure Drop Range: 3.3
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated: Yes
 Scrubber Liquid Flow Rate: 174
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 83000
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 170

- **Pollutants Controlled**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99.0</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

- **Associated Control Equipments And Release Points**

 Release points(s) directly associated with this control equipment

 VER011
Control Equipment : WSC008

- Control Equipment Information

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC008
 AQD Description:
 Company Control Equipment ID: RA-26
 Company Control Equipment Description: Venturi wet scrubber
 Operating Status: Operating
 Initial Installation Date: 01/01/1985
 Manufacturer: FMC
 Model: Model 120K

- Specific Equipment Type information

 Wet Scrubber Type: Venturi
 Operating Pressure Drop Range: 18
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated: Yes
 Scrubber Liquid Flow Rate: 624
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 107000
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 150

- Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99.0</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90.0</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

- Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER012
Control Equipment : WSC009

- Control Equipment Information

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC009
 AQD Description:
 Company Control Equipment ID: RA-29
 Company Control Equipment Description: Venturi scrubber
 Operating Status: Operating
 Initial Installation Date: 01/01/1953
 Manufacturer: AAT
 Model: Model DTV-90

- Specific Equipment Type information

 Wet Scrubber Type: Venturi
 Operating Pressure Drop Range: 29.75
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated: Yes
 Scrubber Liquid Flow Rate: 630
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate:
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 180

- Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable</td>
<td>99.0</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>Portion Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Portion Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Associated Control Equipments And Release Points

 Release points(s) directly associated with this control equipment

 VER014
Control Equipment : WSC010

- **Control Equipment Information**

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC010
 AQD Description:
 Company Control Equipment ID: MONO-5
 Company Control Equipment Description: MONO-5 venturi scrubber
 Operating Status: Operating
 Initial Installation Date: 01/01/1972
 Manufacturer: Ducon
 Model: Type VVO

- **Specific Equipment Type information**

 Wet Scrubber Type: Venturi
 Operating Pressure Drop Range: 26
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated: Yes
 Scrubber Liquid Flow Rate: 721
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate: 99000
 Outlet Gas Flow Rate:
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 168

- **Pollutants Controlled**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99.0</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

- **Associated Control Equipments And Release Points**

 Release points(s) directly associated with this control equipment

 VER019
Control Equipment Information

- Equipment Type: Wet Scrubber
- Control Equipment ID: WSC011
- AQD Description:
 - Company Control Equipment ID: MONO-6
 - Company Control Equipment Description: Venturi scrubber
- Operating Status: Operating
 - Initial Installation Date: 01/01/1972
 - Manufacturer: Ducon
 - Model: Type VVO

Specific Equipment Type Information

- Wet Scrubber Type: Venturi
- Operating Pressure Drop Range: 20
- pH Range for Scrubbing Liquid:
- Scrubber Liquid Recirculated: Yes
- Scrubber Liquid Flow Rate: 740
- Scrubber Liquid Supply Pressure:
- Inlet Gas Flow Rate:
- Outlet Gas Flow Rate: 100000
- Inlet Gas Temp:
- Sec. Outlet Gas Temp: 174

Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99.0</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER020
Control Equipment Information

- Equipment Type: Wet Scrubber
- Control Equipment ID: WSC012
- AQD Description: NS-6
- Company Control Equipment Description: Venturi scrubber
- Operating Status: Operating
- Initial Installation Date: 01/01/1975
- Manufacturer: FMC
- Model: Model 120K

Specific Equipment Type Information

- Wet Scrubber Type: Venturi
- Operating Pressure Drop Range: 21
- pH Range for Scrubbing Liquid: Yes
- Scrubber Liquid Flow Rate: 955
- Scrubber Liquid Recirculated: Yes
- Scrubber Liquid Supply Pressure:
- Inlet Gas Flow Rate: 122000
- Outlet Gas Flow Rate: 158
- Inlet Gas Temp: 158

Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER028
Control Equipment : WSC013

- Control Equipment Information

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC013
 AQD Description:
 Company Control Equipment ID: MW-3
 Company Control Equipment Description:
 Operating Status: Operating
 Initial Installation Date: 01/01/1993
 Manufacturer: AAT
 Model: Model DTV-125

- Specific Equipment Type information

 Wet Scrubber Type: Venturi
 Operating Pressure Drop Range: 21
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated: Yes
 Scrubber Liquid Flow Rate: 736
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 120000
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 150

- Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

- Associated Control Equipments And Release Points

 Release points(s) directly associated with this control equipment
 VER031
Control Equipment : WSC014

- Control Equipment Information

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC014
 AQD Description:
 Company Control Equipment ID: SM-1
 Company Control Equipment Description: Venturi scrubber
 Operating Status: Operating
 Initial Installation Date: 01/01/1987
 Manufacturer: Neptune
 Model: Air-Pol

- Specific Equipment Type information

 Wet Scrubber Type: Venturi
 Operating Pressure Drop Range: 16.1
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated: Yes
 Scrubber Liquid Flow Rate: 707
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate: 66570
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 162

- Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>Portion Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Portion Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER035
Control Equipment : WSC015

Control Equipment Information

Equipment Type: Wet Scrubber
Control Equipment ID: WSC015
AQD Description:
Company Control Equipment ID: PA-4
Company Control Equipment Description:
Operating Status: Operating
Initial Installation Date: 01/01/1964
Manufacturer: FMC
Model: Model 20K

Specific Equipment Type Information

Wet Scrubber Type: Venturi
Operating Pressure Drop Range: 0.01
pH Range for Scrubbing Liquid:
Scrubber Liquid Recirculated: Yes
Scrubber Liquid Flow Rate: 240
Scrubber Liquid Supply Pressure:
Inlet Gas Flow Rate: 20245
Outlet Gas Flow Rate: 20245
Inlet Gas Temp:
Sec. Outlet Gas Temp: 142

Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER001
Control Equipment : WSC016

- Control Equipment Information

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC016
 AQD Description:
 Company Control Equipment ID: PA-5
 Company Control Equipment Description: Venturi scrubber
 Operating Status: Operating
 Initial Installation Date: 01/01/1964
 Manufacturer: FMC
 Model: Model 40K

- Specific Equipment Type information

 Wet Scrubber Type: Venturi
 Operating Pressure Drop Range: 0.01
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated: Yes
 Scrubber Liquid Flow Rate: 240
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 40000
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 94

- Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

- Associated Control Equipments And Release Points

 Release points(s) directly associated with this control equipment

 VER002
Control Equipment : WSC017

- Control Equipment Information

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC017
 AQD Description:
 Company Control Equipment ID: RA-33
 Company Control Equipment Description: Venturi scrubber
 Operating Status: Operating
 Initial Installation Date: 01/01/1972
 Manufacturer: Ducon
 Model: Type VVO

- Specific Equipment Type information

 Wet Scrubber Type: Venturi
 Operating Pressure Drop Range: 0.01
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated: Yes
 Scrubber Liquid Flow Rate: 210
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 40000
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 74

- Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

- Associated Control Equipments And Release Points

 Release points(s) directly associated with this control equipment

 VER016
Control Equipment : WSC018

- Control Equipment Information

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC018
 AQD Description: MONO-3
 Company Control Equipment Description: Venturi scrubber
 Operating Status: Operating
 Initial Installation Date: 01/01/1972
 Manufacturer: FMC
 Model: Model 15K

- Specific Equipment Type information

 Wet Scrubber Type: Venturi
 Operating Pressure Drop Range: 0.01
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated: Yes
 Scrubber Liquid Flow Rate: 90
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 11000
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 57

- Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>Portion Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Portion Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Associated Control Equipments And Release Points

 Release points(s) directly associated with this control equipment

 VER017
Control Equipment Information

- **Equipment Type:** Wet Scrubber
- **Control Equipment ID:** WSC019
- **AQD Description:**
- **Company Control Equipment ID:** MONO-4
- **Company Control Equipment Description:** Venturi scrubber
- **Operating Status:** Operating
- **Initial Installation Date:** 01/01/1972
- **Manufacturer:** AAF
- **Model:** No. 72 Kinpactor

Specific Equipment Type Information

- **Wet Scrubber Type:** Venturi
- **Operating Pressure Drop Range:** 0.01
- **pH Range for Scrubbing Liquid:**
- **Scrubber Liquid Recirculated:** Yes
- **Scrubber Liquid Flow Rate:** 175
- **Scrubber Liquid Supply Pressure:**
- **Inlet Gas Flow Rate:**
- **Outlet Gas Flow Rate:** 25000
- **Inlet Gas Temp:**
- **Sec. Outlet Gas Temp:** 84

Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER018
- **Control Equipment Information**

 Equipment Type: Wet Scrubber
 Control Equipment ID: WSC020
 AQP Description:
 Company Control Equipment ID: MONO-11
 Company Control Equipment Description: Venturi scrubber
 Operating Status: Operating
 Initial Installation Date: 01/01/1990
 Manufacturer: Ducon
 Model: Type VVO

- **Specific Equipment Type Information**

 Wet Scrubber Type: Venturi
 Operating Pressure Drop Range: 13
 pH Range for Scrubbing Liquid:
 Scrubber Liquid Recirculated: Yes
 Scrubber Liquid Flow Rate: 118
 Scrubber Liquid Supply Pressure:
 Inlet Gas Flow Rate:
 Outlet Gas Flow Rate: 20000
 Inlet Gas Temp:
 Sec. Outlet Gas Temp: 64

- **Pollutants Controlled**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>Portion Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Portion Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Associated Control Equipments And Release Points**

 Release points(s) directly associated with this control equipment

 VER024
Control Equipment : WSC021

Control Equipment Information

Equipment Type: Wet Scrubber
Control Equipment ID: WSC021
AQD Description:
Company Control Equipment ID: NS–4
Company Control Equipment Description: Venturi scrubber
Operating Status: Operating
Initial Installation Date: 01/01/1975
Manufacturer: FMC
Model: Model 30K

Specific Equipment Type Information

Wet Scrubber Type: Venturi
Operating Pressure Drop Range: 0.01
pH Range for Scrubbing Liquid:
Scrubber Liquid Recirculated: Yes
Scrubber Liquid Flow Rate: 180
Scrubber Liquid Supply Pressure:
Inlet Gas Flow Rate:
Outlet Gas Flow Rate: 21000
Inlet Gas Temp:
Sec. Outlet Gas Temp: 81

Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER027
Control Equipment Information

- Equipment Type: Wet Scrubber
- Control Equipment ID: WSC022
- AQD Description:
- Company Control Equipment ID: RD-3
- Company Control Equipment Description: Venturi scrubber
- Operating Status: Operating
- Initial Installation Date: 01/01/1983
- Manufacturer: Neptune
- Model: Air-Pol

Specific Equipment Type Information

- Wet Scrubber Type: Venturi
- Operating Pressure Drop Range: 0.01
- pH Range for Scrubbing Liquid:
- Scrubber Liquid Recirculated:
- Scrubber Liquid Flow Rate:
- Scrubber Liquid Supply Pressure:
- Inlet Gas Flow Rate:
- Outlet Gas Flow Rate:
- Inlet Gas Temp: 70
- Sec. Outlet Gas Temp: 5228

Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) - Filterable Portion Only</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) - Filterable Portion Only</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER047
Control Equipment Information

- Equipment Type: Wet Scrubber
- Control Equipment ID: WSC023
- AQD Description:
- Company Control Equipment ID: MONO-2
- Company Control Equipment Description: Venturi scrubber
- Operating Status: Operating
- Initial Installation Date: 01/01/1972
- Manufacturer: FMC
- Model: Model 20K Dual Throat

Specific Equipment Type Information

- Wet Scrubber Type: Venturi
- Operating Pressure Drop Range: 0.01
- pH Range for Scrubbing Liquid:
- Scrubber Liquid Recirculated: Yes
- Scrubber Liquid Flow Rate: 120
- Scrubber Liquid Supply Pressure:
- Inlet Gas Flow Rate:
- Outlet Gas Flow Rate: 16000
- Inlet Gas Temp:
- Sec. Outlet Gas Temp: 79

Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10 (FIL) Filterable</td>
<td>99</td>
<td>99</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>PM2.5 (FIL) Filterable</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER065
Control Equipment Information

Equipment Type: Wet Scrubber
Control Equipment ID: WSC024
AQD Description:
Company Control Equipment ID: MW-6
Company Control Equipment Description:
Operating Status: Operating
Initial Installation Date: 01/01/2007
Manufacturer: Macrotek
Model:

Specific Equipment Type information

Wet Scrubber Type: Spray Chamber
Operating Pressure Drop Range: 0.01
pH Range for Scrubbing Liquid:
Scrubber Liquid Recirculated: Yes
Scrubber Liquid Flow Rate: 700
Scrubber Liquid Supply Pressure:
Inlet Gas Flow Rate:
Outlet Gas Flow Rate:
Inlet Gas Temp:
Sec. Outlet Gas Temp:

Pollutants Controlled

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Design Control Efficiency(%)</th>
<th>Operating Control Efficiency(%)</th>
<th>Capture Efficiency(%)</th>
<th>Total Capture Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Sulfide</td>
<td>98.4</td>
<td>98.4</td>
<td>100</td>
<td>98.4</td>
</tr>
</tbody>
</table>

Associated Control Equipments And Release Points

Release points(s) directly associated with this control equipment

VER066
- **Release Point Information**

 Release Point ID: VER036
 Release Type: Vertical
 AQD Description: BC-1 Bicarb Flash Dryer
 Company Release Point ID: BC-2
 Company Release Point Description: BC-1 Bicarb Flash Dryer
 Operating Status: Operating
 Base Elevation (ft): 6225.07

- **Stack Details**

 Stack Height (ft): 59.71
 Stack Diameter (ft): 2.49
 Exit Gas Velocity (ft/s): 61.12
 Exit Gas Temp (F): 171.0
 Exit Gas Flow Rate (acfm): 21166.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

 Aug 10 2015, 08:15:37
Release Point: VER037

Release Point Information

Release Point ID: VER037
Release Type: Vertical
AQD Description: BC-2 Bicarb Product Handling
Company Release Point ID: BC-2
Company Release Point Description: BC-2 Bicarb Product Handling
Operating Status: Operating
Base Elevation (ft): 6225.07

Stack Details

Stack Height (ft): 59.71
Stack Diameter (ft): 2.49
Exit Gas Velocity (ft/s): 91.0
Exit Gas Flow Rate (acfm): 10000.0
Exit Gas Temp (F): 103.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

- **Release Point Information**

 Release Point ID: AVL002
 Release Type: Fugitive (Area, Volume, Line)
 AQD Description: COALPILE
 Company Release Point ID: COALPILE
 Company Release Point Description: Fugitive emissions from coal handling activities
 Operating Status: Operating
 Release Height (ft): 1.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

 Facility Detail Report (F000349): Westvaco Facility
Release Point: AVL003

- Release Point Information

 Release Point ID: AVL003
 Release Type: Fugitive (Area, Volume, Line)
 AQD Description: Coal Pile
 Company Release Point ID: COALWE
 Company Release Point Description: Coal Pile wind erosion
 Operating Status: Operating
 Release Height (ft): 23.0

- Release Latitude and Longitude

 Latitude: 41.61277 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Page 130

Facility Detail Report (F000349): Westvaco Facility
Release Point : VER054

- **Release Point Information**

 Release Point ID: VER054
 Release Type: Vertical
 AQD Description: Mono2 Cooling Tower Cell 1
 Company Release Point ID: ct1
 Company Release Point Description: Mono2 Cooling Tower Cell 1
 Operating Status: Operating
 Base Elevation (ft): 6292.65

- **Stack Details**

 Stack Height (ft): 66.01
 Stack Diameter (ft): 24.02
 Exit Gas Velocity (ft/s): 27.99
 Exit Gas Flow Rate (acfm): 760000.0
 Exit Gas Temp (F): 100.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

- **Release Point Information**

 Release Point ID: VER052
 Release Type: Vertical
 AQD Description: MONO1CT1
 Company Release Point ID: ct1
 Company Release Point Description: ct1
 Operating Status: Operating
 Base Elevation (ft): 6292.65

- **Stack Details**

 Stack Height (ft): 66.01
 Stack Diameter (ft): 18.01
 Exit Gas Velocity (ft/s): 32.74
 Exit Gas Temp (F): 100.0
 Exit Gas Flow Rate (acfm): 500000.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
Release Point Information

- Release Point ID: VER048
- Release Type: Vertical
- AQD Description: SESQCT1
- Company Release Point ID: ct1
- Company Release Point Description: Sesqui Cooling Tower
- Operating Status: Operating
- Base Elevation (ft): 6279.53

Stack Details

- Stack Height (ft): 58.01
- Stack Diameter (ft): 25.98
- Exit Gas Velocity (ft/s): 20.87
- Exit Gas Temp (F): 100.0
- Exit Gas Flow Rate (acfm): 665000.0

Release Latitude and Longitude

- Latitude: 41.61277
- Longitude: −109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O2</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point : VER049

- Release Point Information

 Release Point ID: VER049
 Release Type: Vertical
 AQD Description: SESQCT2
 Company Release Point ID: ct2
 Company Release Point Description: Sesqui Cooling Tower Cell 2
 Operating Status: Operating
 Base Elevation (ft): 6279.53

- Stack Details

 Stack Height (ft): 58.01 Stack Diameter (ft): 25.98
 Exit Gas Velocity (ft/s): 20.87 Exit Gas Flow Rate (acfm): 665000.0
 Exit Gas Temp (F): 100.0

- Release Latitude and Longitude

 Latitude: 41.61277 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
- **Release Point Information**

 Release Point ID: VER053
 Release Type: Vertical
 AQD Description: MONO1CT2
 Mono1 Cooling Tower Cell 2
 Company Release Point ID: ct2
 Company Release Point Description: Mono1 Cooling Tower Cell 2
 Operating Status: Operating
 Base Elevation (ft): 6292.65

- **Stack Details**

 Stack Height (ft): 66.01
 Stack Diameter (ft): 18.01
 Exit Gas Velocity (ft/s): 32.74
 Exit Gas Flow Rate (acfm): 500000.0
 Exit Gas Temp (F): 100.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point Information

- Release Point ID: VER055
- Release Type: Vertical
- AQD Description: Mono2 Cooling Tower Cell 2
- Company Release Point ID: ct2
- Company Release Point Description: Mono2 Cooling Tower Cell 2
- Operating Status: Operating
- Base Elevation (ft): 6292.65

Stack Details

- Stack Height (ft): 66.01
- Stack Diameter (ft): 24.02
- Exit Gas Velocity (ft/s): 27.99
- Exit Gas Flow Rate (acfm): 760000.0
- Exit Gas Temp (F): 100.0

Release Latitude and Longitude

- Latitude: 41.61277
- Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
Release Point : VER056

- **Release Point Information**

 Release Point ID: VER056
 Release Type: Vertical
 AQD Description: MONO2CT3
 Company Release Point ID: ct3
 Company Release Point Description: ct3
 Operating Status: Operating
 Base Elevation (ft): 6292.65

- **Stack Details**

 Stack Height (ft): 66.01
 Stack Diameter (ft): 24.02
 Exit Gas Velocity (ft/s): 27.99
 Exit Gas Flow Rate (acfm): 760000.0
 Exit Gas Temp (F): 100.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point: VER050

- **Release Point Information**

 Release Point ID: VER050
 Release Type: Vertical
 AQD Description: SESQCT3
 Company Release Point ID: ct3
 Company Release Point Description: Sesqui Cooling Tower Cell 3
 Operating Status: Operating
 Base Elevation (ft): 6279.53

- **Stack Details**

 Stack Height (ft): 58.01
 Stack Diameter (ft): 25.98
 Exit Gas Velocity (ft/s): 20.87
 Exit Gas Flow Rate (acfm): 665000.0
 Exit Gas Temp (F): 100.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point Information

Release Point ID: VER051
Release Type: Vertical
AQD Description: SESQCT4
Sesqui Cooling Tower Cell 4
Company Release Point ID: ct4
Company Release Point Description: Sesqui Cooling Tower Cell 4
Operating Status: Operating
Base Elevation (ft): 6279.53

Stack Details

Stack Height (ft): 58.01
Exit Gas Velocity (ft/s): 20.87
Exit Gas Temp (°F): 100.0
Stack Diameter (ft): 25.98
Exit Gas Flow Rate (acfm): 665000.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point : AVL010

- Release Point Information

 Release Point ID: AVL010
 Release Type: Fugitive (Area, Volume, Line)
 AQD Description:

 Company Release Point ID: DECAMINING
 Company Release Point Description: Fugitive PM from mining, hauling deca crystals
 Operating Status: Operating
 Release Height (ft): 10.0

- Release Latitude and Longitude

 Latitude: 41.61277 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point : VER070

- Release Point Information

 Release Point ID: VER070
 Release Type: Vertical
 AQD Description:
 Company Release Point ID: EG-1
 Company Release Point Description: Engine exhaust stack
 Operating Status: Operating
 Base Elevation (ft): 6326.12

- Stack Details

 Stack Height (ft): 10.0
 Stack Diameter (ft): 0.33
 Exit Gas Velocity (ft/s): 1.0
 Exit Gas Flow Rate (acfm): 1.0
 Exit Gas Temp (F): 1.0

- Release Latitude and Longitude

 Latitude: 41.61277
 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point Information

Release Point ID: VER071
Release Type: Vertical
AQP Description:
Company Release Point ID: EG-2
Company Release Point Description: Engine exhaust stack
Operating Status: Operating
Base Elevation (ft): 6296.92

Stack Details

Stack Height (ft): 10.0
Stack Diameter (ft): 0.33
Exit Gas Velocity (ft/s): 1.0
Exit Gas Flow Rate (acfm): 1.0
Exit Gas Temp (F): 1.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point : VER072

Release Point Information

Release Point ID: VER072
Release Type: Vertical
AQD Description:
Company Release Point ID: EG-3
Company Release Point Description: Engine exhaust stack
Operating Status: Operating
Base Elevation (ft): 6224.74

Stack Details

Stack Height (ft): 10.0
Stack Diameter (ft): 0.33
Exit Gas Velocity (ft/s): 1.0
Exit Gas Flow Rate (acfm): 1.0
Exit Gas Temp (F): 1.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
Release Point Information

Release Point ID: VER073
Release Type: Vertical
AQD Description:
Company Release Point ID: EG-8
Company Release Point Description: Engine exhaust stack
Operating Status: Operating
Base Elevation (ft): 6350.0

Stack Details

Stack Height (ft): 15.0
Stack Diameter (ft): 0.5
Exit Gas Velocity (ft/s): 1.0
Exit Gas Flow Rate (acfm): 1.0
Exit Gas Temp (F): 1.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

- **Release Point Information**

 Release Point ID: VER057
 Release Type: Vertical
 AQD Description: Mine Vent 2
 Company Release Point ID: Mine Vent 2
 Company Release Point Description: Mine Vent 2
 Operating Status: Operating
 Base Elevation (ft): 6226.05

- **Stack Details**

 Stack Height (ft): 4.99
 Stack Diameter (ft): 14.01
 Exit Gas Velocity (ft/s): 9.74
 Exit Gas Flow Rate (acfm): 1700000.0
 Exit Gas Temp (F): 70.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Page 145
Facility Detail Report (F000349): Westvaco Facility
Release Point: VER058

- Release Point Information

 Release Point ID: VER058
 Release Type: Vertical
 AQD Description: MINVENT3
 Company Release Point ID: Mine Vent 3
 Company Release Point Description: Mine vent 3
 Operating Status: Operating
 Base Elevation (ft): 6355.31

- Stack Details

 Stack Height (ft): 2.99
 Stack Diameter (ft): 18.01
 Exit Gas Velocity (ft/s): 5.25
 Exit Gas Flow Rate (acfm): 1700000.0
 Exit Gas Temp (F): 70.0

- Release Latitude and Longitude

 Latitude: 41.61277
 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point : VER060

Release Point Information

Release Point ID: VER060
Release Type: Vertical
AQD Description: Mine Vent 6
Company Release Point ID: Mine Vent 6
Company Release Point Description: Mine Vent 6
Operating Status: Operating
Base Elevation (ft): 6322.18

Stack Details

Stack Height (ft): 2.99
Stack Diameter (ft): 22.01
Exit Gas Velocity (ft/s): 21.49
Exit Gas Temp (F): 70.0
Exit Gas Flow Rate (acfm): 1700000.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Release Point: VER061

Release Point Information

- Release Point ID: VER061
- Release Type: Vertical
- AQD Description: MINVENT9
- Company Release Point ID: Mine Vent 9
- Company Release Point Description: Mine vent 9
- Operating Status: Operating
- Base Elevation (ft): 6396.33

Stack Details

- Stack Height (ft): 2.99
- Stack Diameter (ft): 18.01
- Exit Gas Velocity (ft/s): 17.36
- Exit Gas Flow Rate (acfm): 1700000.0
- Exit Gas Temp (F): 70.0

Release Latitude and Longitude

- Latitude: 41.61277
- Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point : VER063

- Release Point Information

 Release Point ID: VER063
 Release Type: Vertical
 AQD Description: Mine Air Heater
 Company Release Point ID: MINEVENT
 Company Release Point Description: Mine shafts 2, 3, 4, 6, 9 (MINEVENT)
 Operating Status: Operating
 Base Elevation (ft): 6318.16

- Stack Details

 Stack Height (ft): 9.4
 Stack Diameter (ft): 19.2
 Exit Gas Velocity (ft/s): 14.3
 Exit Gas Flow Rate (acfm): 1242122.0
 Exit Gas Temp (F): 70.0

- Release Latitude and Longitude

 Latitude: 41.61277
 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
- **Release Point Information**

 Release Point ID: VER059
 Release Type: Vertical
 AQD Description: MINVENT4
 Company Release Point ID: MineVent4
 Company Release Point Description: Mine vent
 Operating Status: Operating
 Base Elevation (ft): 6291.01

- **Stack Details**

 Stack Height (ft): 33.01
 Stack Diameter (ft): 24.02
 Exit Gas Velocity (ft/s): 17.49
 Exit Gas Flow Rate (acfm): 1700.0
 Exit Gas Temp (F): 70.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
Release Point : AVL006

- **Release Point Information**

 Release Point ID: AVL006
 Release Type: Fugitive (Area, Volume, Line)
 AQD Description: Plant fugitive emissions - Mobile equipment emissions
 Company Release Point ID: MOBILEQUIP
 Company Release Point Description: Mobile equipment emissions
 Operating Status: Operating
 Release Height (ft): 7.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPA</th>
<th>CYT</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
Release Point : VER023

- **Release Point Information**

 Release Point ID: VER023
 Release Type: Vertical
 AQD Description: Mono-10 Mono Bulk Truck Loadout
 Company Release Point ID: Mono-10
 Company Release Point Description: Mono-10 Mono Bulk Truck Loadout
 Operating Status: Operating
 Base Elevation (ft): 6248.69

- **Stack Details**

 Stack Height (ft): 89.01
 Stack Diameter (ft): 2.0
 Exit Gas Velocity (ft/s): 65.26
 Exit Gas Flow Rate (acfm): 12300.0
 Exit Gas Temp (F): 80.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point Information

Release Point ID: VER024
Release Type: Vertical
AQD Description: Mono-11 Mono Dual Ore Reclaim
Company Release Point ID: Mono-11
Company Release Point Description: Mono-11 Mono Dual Ore Reclaim
Operating Status: Operating
Base Elevation (ft): 6308.73

Stack Details

Stack Height (ft): 64.99
Stack Diameter (ft): 2.49
Exit Gas Velocity (ft/s): 67.91
Exit Gas Flow Rate (acfm): 20000.0
Exit Gas Temp (F): 64.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Release Point : VER025

Release Point Information

Release Point ID: VER025
Release Type: Vertical
AQD Description: Mono-12 Mono Loadout Screening
Company Release Point ID: Mono-12
Company Release Point Description: R-5 Sesqui Fluid Bed Calciner (RA-25)
Operating Status: Operating
Base Elevation (ft): 6242.78

Stack Details

Stack Height (ft): 60.01
Stack Diameter (ft): 2.99
Exit Gas Velocity (ft/s): 56.59
Exit Gas Flow Rate (acfm): 24000.0
Exit Gas Temp (F): 69.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
- **Release Point Information**

 Release Point ID: VER016
 Release Type: Vertical
 AQD Description: Mono-2 Mono Primary Crusher
 Company Release Point ID: Mono-2
 Company Release Point Description: RA-33 Sesqui Silo Storage Vent
 Operating Status: Operating
 Base Elevation (ft): 6308.07

- **Stack Details**

 Stack Height (ft): 64.99
 Stack Diameter (ft): 2.0
 Exit Gas Velocity (ft/s): 84.88
 Exit Gas Flow Rate (acfm): 15980.0
 Exit Gas Temp (F): 79.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
Release Point Information

- Release Point ID: VER065
- Release Type: Vertical
- AQD Description:
- Company Release Point ID: MONO-2
- Company Release Point Description: Vertical stack
- Operating Status: Operating
- Base Elevation (ft): 6308.07

Stack Details

- Stack Height (ft): 65.0
- Stack Diameter (ft): 2.0
- Exit Gas Velocity (ft/s): 84.88
- Exit Gas Flow Rate (acfm): 16000.0
- Exit Gas Temp (F): 79.0

Release Latitude and Longitude

- Latitude: 41.61277
- Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility

Page 156
- **Release Point Information**

 Release Point ID: VER017
 Release Type: Vertical
 AQD Description: Mono-3 Mono Ore Distribution
 Company Release Point ID: Mono-3
 Company Release Point Description: Mono-3 Mono Ore Distribution
 Operating Status: Operating
 Base Elevation (ft): 6298.56

- **Stack Details**

 Stack Height (ft): 85.01
 Stack Diameter (ft): 2.0
 Exit Gas Velocity (ft/s): 58.37
 Exit Gas Flow Rate (acfm): 11000.0
 Exit Gas Temp (F): 57.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
- **Release Point Information**

 Release Point ID: VER018
 Release Type: Vertical
 AQD Description: Mono-4 Mono Secondary Crusher Scrubber
 Company Release Point ID: Mono-4
 Company Release Point Description: Mono-4 Mono Secondary Crusher Scrubber
 Operating Status: Operating
 Base Elevation (ft): 6305.12

- **Stack Details**

 Stack Height (ft): 106.0
 Stack Diameter (ft): 3.0
 Exit Gas Velocity (ft/s): 58.95
 Exit Gas Flow Rate (acfm): 25000.0
 Exit Gas Temp (F): 84.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

- **Release Point Information**

 Release Point ID: VER019
 Release Type: Vertical
 AQD Description: Mono-5 Mono 1 Gas Fired Calciner
 Company Release Point ID: Mono-5
 Company Release Point Description: Mono-5 Mono 1 Gas Fired Calciner
 Operating Status: Operating
 Base Elevation (ft): 6300.52

- **Stack Details**

 Stack Height (ft): 95.0
 Stack Diameter (ft): 5.0
 Exit Gas Velocity (ft/s): 84.03
 Exit Gas Flow Rate (acfm): 99000.0
 Exit Gas Temp (F): 168.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

 Facility Detail Report (F000349): Westvaco Facility
Release Point Information

Release Point ID: VER020
Release Type: Vertical
AQD Description: Mono-6 Mono 1 Fluid Bed Dryer

Company Release Point ID: Mono-6
Company Release Point Description: Mono-6 Mono 1 Fluid Bed Dryer
Operating Status: Operating
Base Elevation (ft): 6296.92

Stack Details

Stack Height (ft): 95.01
Stack Diameter (ft): 4.99
Exit Gas Velocity (ft/s): 84.88
Exit Gas Flow Rate (acfm): 108650.0
Exit Gas Temp (F): 174.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

[continued on next page]
- **Release Point Information**

 Release Point ID: VER021
 Release Type: Vertical
 AQD Description: Mono-8 Mono Stockpile Reclaim scrubber
 Company Release Point ID: Mono-8
 Company Release Point Description: mono stockpile reclaim scrubber
 Operating Status: Operating
 Base Elevation (ft): 6311.35

- **Stack Details**

 Stack Height (ft): 58.01
 Stack Diameter (ft): 2.49
 Exit Gas Velocity (ft/s): 54.72
 Exit Gas Flow Rate (acfm): 16118.0
 Exit Gas Temp (F): 88.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
- **Release Point Information**

 Release Point ID: VER022
 Release Type: Vertical
 AQD Description: Mono-9 Mono Railcar Loadout
 Company Release Point ID: Mono-9
 Company Release Point Description: Mono-9 Mono Railcar Loadout
 Operating Status: Operating
 Base Elevation (ft): 6249.67

- **Stack Details**

 Stack Height (ft): 39.99
 Stack Diameter (ft): 2.0
 Exit Gas Velocity (ft/s): 47.74
 Exit Gas Flow Rate (acfm): 8800.0
 Exit Gas Temp (F): 70.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

`Facility Detail Report (F000349): Westvaco Facility`
Release Point: AVL004

Release Point Information

Release Point ID: AVL004
Release Type: Fugitive (Area, Volume, Line)
AQD Description: Mono Plant Ore Stockpile
Company Release Point ID: MONOPILE
Company Release Point Description: Mono Plant Ore Stockpile handling activities
Operating Status: Operating
Release Height (ft): 1.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

- **Release Point Information**

 Release Point ID: AVL005
 Release Type: Fugitive (Area, Volume, Line)
 AQD Description: Mono Plant Ore Stockpile
 Company Release Point ID: MONOWE
 Company Release Point Description: Mono Plant Ore Stockpile wind erosion
 Operating Status: Operating
 Release Height (ft): 53.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point : VER029

Release Point Information

Release Point ID: VER029
Release Type: Vertical
AQD Description: MW-1 Lime Silo
Company Release Point ID: MW-1
Company Release Point Description: MW-1 Lime Silo
Operating Status: Operating
Base Elevation (ft): 6301.51

Stack Details

Stack Height (ft): 89.99
Exit Gas Velocity (ft/s): 42.45
Exit Gas Temp (F): 75.0
Stack Diameter (ft): 0.98
Exit Gas Flow Rate (acfm): 1.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Page 165 Facility Detail Report (F000349): Westvaco Facility
Release Point : VER030

Release Point Information

- Release Point ID: VER030
- Release Type: Vertical
- AQD Description: MW-2 Perlite Precoat Silo
- Company Release Point ID: MW-2
- Company Release Point Description: MW-2 Perlite Precoat Silo
- Operating Status: Operating
- Base Elevation (ft): 6299.87

Stack Details

- Stack Height (ft): 70.01
- Stack Diameter (ft): 0.98
- Exit Gas Velocity (ft/s): 29.72
- Exit Gas Flow Rate (acfm): 1400.0
- Exit Gas Temp (F): 75.0

Release Latitude and Longitude

- Latitude: 41.61277
- Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point : VER031

- Release Point Information

 Release Point ID: VER031
 Release Type: Vertical
 AQD Description: MW3
 Company Release Point ID: MW-3
 Company Release Point Description: Fluid Bed Dryer scrubber
 Operating Status: Operating
 Base Elevation (ft): 6287.73

- Stack Details

 Stack Height (ft): 129.99
 Stack Diameter (ft): 6.5
 Exit Gas Velocity (ft/s): 60.3
 Exit Gas Flow Rate (acfm): 104261.0
 Exit Gas Temp (F): 150.0

- Release Latitude and Longitude

 Latitude: 41.61277
 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

- **Release Point Information**

 Release Point ID: VER032
 Release Type: Vertical
 AQD Description: MW-4 – Mine Water Housekeeping
 Company Release Point ID: MW-4
 Company Release Point Description: MW-4 – Mine Water Housekeeping
 Operating Status: Operating
 Base Elevation (ft): 6241.47

- **Stack Details**

 Stack Height (ft): 129.99
 Stack Diameter (ft): 1.41
 Exit Gas Velocity (ft/s): 52.62
 Exit Gas Flow Rate (acfm): 5000.0
 Exit Gas Temp (F): 68.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

 Facility Detail Report (F000349): Westvaco Facility
- **Release Point Information**

 Release Point ID: VER042
 Release Type: Vertical
 AQD Description: MW-5 Mine Water Plant Boiler
 Company Release Point ID: MW-5
 Company Release Point Description: No. 8 Gas Boiler stack
 Operating Status: Operating
 Base Elevation (ft): 6295.6

- **Stack Details**

 Stack Height (ft): 170.0
 Stack Diameter (ft): 7.83
 Exit Gas Velocity (ft/s): 40.6
 Exit Gas Flow Rate (acfm): 117286.0
 Exit Gas Temp (F): 311.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teledyne Monitor Labs SM8200</td>
<td></td>
</tr>
<tr>
<td>Rosemount Oxymitter 4000</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Teledyne Ultra-Flow 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- **Release Point Information**

 Release Point ID: VER066
 Release Type: Vertical
 AQD Description:
 Company Release Point ID: MW-6
 Company Release Point Description: Vertical stack for H2S and CO2 emissions from CO2 stripping system
 Operating Status: Operating
 Base Elevation (ft): 6287.73

- **Stack Details**

 Stack Height (ft): 140.0
 Stack Diameter (ft): 1.0
 Exit Gas Velocity (ft/s): 59.4
 Exit Gas Flow Rate (acfm): 2800.0
 Exit Gas Temp (F): 100.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

- Facility Detail Report (F000349): Westvaco Facility
Release Point : VER067

Release Point Information

- **Release Point ID:** VER067
- **Release Type:** Vertical
- **AQD Description:**
- **Company Release Point ID:** MW-7
- **Company Release Point Description:** LW Process H2S vent
- **Operating Status:** Operating
- **Base Elevation (ft):** 6224.75

Stack Details

- **Stack Height (ft):** 70.0
- **Stack Diameter (ft):** 0.5
- **Exit Gas Velocity (ft/s):** 1.0
- **Exit Gas Flow Rate (acfm):** 1.0
- **Exit Gas Temp (F):** 1.0

Release Latitude and Longitude

- **Latitude:** 41.61277
- **Longitude:** -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point : VER062

- Release Point Information

 Release Point ID: VER062
 Release Type: Vertical
 AQD Description: Plant Malfunctions (excess emissions reported by company)
 Company Release Point ID: na
 Company Release Point Description: Plant Malfunctions (excess emissions reported by company)
 Operating Status: Operating
 Base Elevation (ft): 3101.0

- Stack Details

 Stack Height (ft): 0.0
 Stack Diameter (ft): 0.0
 Exit Gas Velocity (ft/s): 0.0
 Exit Gas Flow Rate (acfm): 0.0
 Exit Gas Temp (F): 0.0

- Release Latitude and Longitude

 Latitude: 41.61277
 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point : VER068

- **Release Point Information**

 Release Point ID: VER068
 Release Type: Vertical
 AQD Description:
 Company Release Point ID: NS-10
 Company Release Point Description: Vertical stack on silo
 Operating Status: Operating
 Base Elevation (ft): 6305.45

- **Stack Details**

 Stack Height (ft): 100.0
 Stack Diameter (ft): 0.82
 Exit Gas Velocity (ft/s): 63.11
 Exit Gas Flow Rate (acfm): 2000.0
 Exit Gas Temp (F): 69.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
- **Release Point Information**

 Release Point ID: VER069
 Release Type: Vertical
 AQD Description:
 Company Release Point ID: NS-11
 Company Release Point Description: Vertical baghouse stack
 Operating Status: Operating
 Base Elevation (ft): 6305.45

- **Stack Details**

 Stack Height (ft): 10.0
 Stack Diameter (ft): 0.82
 Exit Gas Velocity (ft/s): 63.11
 Exit Gas Flow Rate (acfm): 2000.0
 Exit Gas Temp (F): 69.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point Information

Release Point ID: VER033
Release Type: Vertical
AQR Description: NS-1A Mono Coal Fired Boiler

Company Release Point ID: NS-1A
Company Release Point Description: NS-1A Mono Coal Fired Boiler
Operating Status: Operating
Base Elevation (ft): 6305.45

Stack Details

Stack Height (ft): 300.0
Stack Diameter (ft): 11.5
Exit Gas Velocity (ft/s): 57.61
Exit Gas Flow Rate (acfm): 360000.0
Exit Gas Temp (F): 170.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land 4500</td>
<td></td>
</tr>
<tr>
<td>Land FGA II</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teledyne Ultra-Flow 150</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Release Point Information

- Release Point ID: VER043
- Release Type: Vertical
- AQD Description: NS-1B
- Company Release Point ID: NS-1B
- Company Release Point Description: NS-1B No. 7 Coal Boiler
- Operating Status: Operating
- Base Elevation (ft): 6305.45

Stack Details

- Stack Height (ft): 300.0
- Stack Diameter (ft): 11.5
- Exit Gas Velocity (ft/s): 57.61
- Exit Gas Flow Rate (acfm): 359000.0
- Exit Gas Temp (F): 170.0

Release Latitude and Longitude

- Latitude: 41.61277
- Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land 4500</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Land FGA II</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teledyne Ultra-Flow 150</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Release Point : VER034

- **Release Point Information**

 Release Point ID: VER034
 Release Type: Vertical
 AQD Description: NS-2B Mono Powerhouse Housekeeping baghouse
 Company Release Point ID: NS-2B
 Company Release Point Description: NS-2B Mono Powerhouse Housekeeping baghouse
 Operating Status: Operating
 Base Elevation (ft): 6297.57

- **Stack Details**

 Stack Height (ft): 141.01
 Stack Diameter (ft): 1.18
 Exit Gas Velocity (ft/s): 48.75
 Exit Gas Flow Rate (acfm): 3199.0
 Exit Gas Temp (F): 69.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point Information

Release Point ID: VER026
Release Type: Vertical
AQD Description: NS-3 Mono 2 Gas Fired Calciner
Company Release Point ID: NS-3
Company Release Point Description: NS-3 Mono 2 Gas Fired Calciner
Operating Status: Operating
Base Elevation (ft): 6300.85

Stack Details

Stack Height (ft): 104.0
Stack Diameter (ft): 8.0
Exit Gas Velocity (ft/s): 74.9
Exit Gas Flow Rate (acfm): 225900.0
Exit Gas Temp (F): 405.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land 4500 MkII</td>
<td></td>
</tr>
</tbody>
</table>
- **Release Point Information**

 Release Point ID: VER027
 Release Type: Vertical
 AQD Description: NS-4 Mono Secondary Crusher Scrubber
 Company Release Point ID: NS-4
 Company Release Point Description: NS-4 Mono Secondary Crusher Scrubber
 Operating Status: Operating
 Base Elevation (ft): 6305.45

- **Stack Details**

 Stack Height (ft): 77.99
 Stack Diameter (ft): 2.99
 Exit Gas Velocity (ft/s): 49.51
 Exit Gas Flow Rate (acfm): 21000.0
 Exit Gas Temp (F): 81.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

 Facility Detail Report (F000349): Westvaco Facility
- **Release Point Information**

 Release Point ID: VER028
 Release Type: Vertical
 AQD Description: NS-6 Mono 2 Fluid Bed Dryer
 Company Release Point ID: NS-6
 Company Release Point Description: NS-6 Mono 2 Fluid Bed Dryer
 Operating Status: Operating
 Base Elevation (ft): 6297.9

- **Stack Details**

 Stack Height (ft): 95.01
 Stack Diameter (ft): 6.5
 Exit Gas Velocity (ft/s): 61.29
 Exit Gas Flow Rate (acf/m): 123090.0
 Exit Gas Temp (F): 158.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point : VER044

- Release Point Information

 Release Point ID: VER044
 Release Type: Vertical
 AQD Description: NS2A Mono Power Housekeeping Stack
 Company Release Point ID: NS2A
 Company Release Point Description: Mono Power Housekeeping Stack
 Operating Status: Operating
 Base Elevation (ft): 6297.57

- Stack Details

 Stack Height (ft): 141.01
 Stack Diameter (ft): 1.18
 Exit Gas Velocity (ft/s): 48.75
 Exit Gas Flow Rate (acfm): 3200.0
 Exit Gas Temp (F): 69.0

- Release Latitude and Longitude

 Latitude: 41.61277
 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point: VER001

- Release Point Information

 Release Point ID: VER001
 Release Type: Vertical
 AQD Description: PA4
 Company Release Point ID: PA-4
 Company Release Point Description: Sesqui plant hammermill crusher vent
 Operating Status: Operating
 Base Elevation (ft): 6224.74

- Stack Details

 Stack Height (ft): 77.0
 Stack Diameter (ft): 2.99
 Exit Gas Velocity (ft/s): 47.74
 Exit Gas Flow Rate (acfm): 20248.0
 Exit Gas Temp (F): 142.0

- Release Latitude and Longitude

 Latitude: 41.61277
 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

 Facility Detail Report (F000349): Westvaco Facility
- **Release Point Information**

 Release Point ID: VER002
 Release Type: Vertical
 AQD Description: PA-5 Sesqui Plant Ore Screening Vent
 Company Release Point ID: PA-5
 Company Release Point Description: PA-5 Sesqui Plant Ore Screening Vent
 Operating Status: Operating
 Base Elevation (ft): 6231.3

- **Stack Details**

 Stack Height (ft): 89.01
 Stack Diameter (ft): 2.99
 Exit Gas Velocity (ft/s): 94.32
 Exit Gas Flow Rate (acfm): 32810.0
 Exit Gas Temp (F): 94.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPA</th>
<th>CY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
Release Point : VER003

Release Point Information

Release Point ID: VER003
Release Type: Vertical
AQD Description: PA-6 Sesqui Plant Dissolver Vent
Company Release Point ID: PA-6
Company Release Point Description: PA-6 Sesqui Plant Dissolver Vent
Operating Status: Operating
Base Elevation (ft): 6223.75

Stack Details

Stack Height (ft): 70.01
Exit Gas Velocity (ft/s): 29.72
Exit Gas Temp (F): 142.0

Stack Diameter (ft): 0.98
Exit Gas Flow Rate (acfm): 1347.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Page 184 Facility Detail Report (F000349): Westvaco Facility
- **Release Point Information**

 Release Point ID: VER004
 Release Type: Vertical
 AQD Description: PA-7
 Company Release Point ID: PA-7
 Company Release Point Description: Sesqui Plant Disolver Vent
 Operating Status: Operating
 Base Elevation (ft): 6223.75

- **Stack Details**

 Stack Height (ft): 70.01
 Stack Diameter (ft): 0.98
 Exit Gas Velocity (ft/s): 29.72
 Exit Gas Flow Rate (acfm): 1400.0
 Exit Gas Temp (F): 142.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
- **Release Point Information**

 | Release Point ID: VER005
 | Release Type: Vertical
 | AQD Description: PA-8 Sesqui Plant Dissolver Vent
 | Company Release Point ID: PA-8
 | Company Release Point Description: PA-8 Sesqui Plant Dissolver Vent
 | Operating Status: Operating
 | Base Elevation (ft): 6224.74

- **Stack Details**

 | Stack Height (ft): 75.0
 | Stack Diameter (ft): 0.98
 | Exit Gas Velocity (ft/s): 29.72
 | Exit Gas Flow Rate (acfm): 1400.0
 | Exit Gas Temp (F): 142.0

- **Release Latitude and Longitude**

 | Latitude: 41.61277
 | Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point : VER006

- Release Point Information

 Release Point ID: VER006
 Release Type: Vertical
 AQD Description: PA-9 Sesqui Plant Dissolver Vent
 Company Release Point ID: PA-9
 Company Release Point Description: PA-9 Sesqui Plant Dissolver Vent
 Operating Status: Operating
 Base Elevation (ft): 6225.07

- Stack Details

 Stack Height (ft): 75.0
 Stack Diameter (ft): 0.98
 Exit Gas Velocity (ft/s): 29.72
 Exit Gas Flow Rate (acfm): 1400.0
 Exit Gas Temp (F): 142.0

- Release Latitude and Longitude

 Latitude: 41.61277
 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point : VER038

- Release Point Information

 Release Point ID: VER038
 Release Type: Vertical
 AQD Description: PH-1A Sesqui Gas Fired Boiler
 Company Release Point ID: PH-1A
 Company Release Point Description: PH-1A Sesqui Gas Fired Boiler
 Operating Status: Operating
 Base Elevation (ft): 6230.0

- Stack Details

 Stack Height (ft): 100.0
 Stack Diameter (ft): 9.0
 Exit Gas Velocity (ft/s): 13.22
 Exit Gas Flow Rate (acfm): 50450.0
 Exit Gas Temp (F): 560.0

- Release Latitude and Longitude

 Latitude: 41.61277
 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point : VER039

- **Release Point Information**

 Release Point ID: VER039
 Release Type: Vertical
 AQD Description: PH-1B Sesqui Gas Fired Boiler

 Company Release Point ID: PH-1B
 Company Release Point Description: PH-1B No.2 Sesqui Gas Fired Boiler
 Operating Status: Operating
 Base Elevation (ft): 6230.0

- **Stack Details**

 Stack Height (ft): 100.0
 Stack Diameter (ft): 9.0
 Exit Gas Velocity (ft/s): 13.22
 Exit Gas Flow Rate (acfm): 50450.0
 Exit Gas Temp (F): 560.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Page 189
Facility Detail Report (F000349): Westvaco Facility
Release Point Information

Release Point ID: VER040
Release Type: Vertical
AQD Description: PH-2 Sesqui Gas Fired Boiler

Company Release Point ID: PH-2
Company Release Point Description: PH-2 No.3 Sesqui Gas Fired Boiler
Operating Status: Operating
Base Elevation (ft): 6229.0

Stack Details

Stack Height (ft): 70.0
Stack Diameter (ft): 7.5
Exit Gas Velocity (ft/s): 16.98
Exit Gas Flow Rate (acfm): 45000.0
Exit Gas Temp (F): 250.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point : VER041

- **Release Point Information**

 Release Point ID: VER041
 Release Type: Vertical
 AQD Description: PH-3 Sesqui Gas Fired Boiler
 Company Release Point ID: PH-3
 Company Release Point Description: PH-3 No. 4 Sesqui Gas Fired Boiler
 Operating Status: Operating
 Base Elevation (ft): 6229.3

- **Stack Details**

 Stack Height (ft): 70.01
 Stack Diameter (ft): 7.5
 Exit Gas Velocity (ft/s): 27.35
 Exit Gas Flow Rate (acfm): 72500.0
 Exit Gas Temp (F): 250.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point Information

- **Release Point ID:** VER045
- **Release Type:** Vertical
- **AQD Description:** RA22A&B
- **Company Release Point ID:** RA 22A&B
- **Company Release Point Description:** R-9 Sesqui Gas Fired Calciner
- **Operating Status:** Operating
- **Base Elevation (ft):** 6222.44

Stack Details

- **Stack Height (ft):** 64.01
- **Stack Diameter (ft):** 3.51
- **Exit Gas Velocity (ft/s):** 49.38
- **Exit Gas Flow Rate (acfm):** 46094.0
- **Exit Gas Temp (F):** 144.0

Release Latitude and Longitude

- **Latitude:** 41.61277
- **Longitude:** -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
- Release Point Information

 Release Point ID: VER046
 Release Type: Vertical
 AQD Description: RA22A&B R-9 Sesqui Gas Fired Calciner
 Company Release Point ID: RA 22A&B
 Company Release Point Description: RA22A&B R-9 Sesqui Gas Fired Calciner
 Operating Status: Operating
 Base Elevation (ft): 6222.44

- Stack Details

 Stack Height (ft): 64.01 Stack Diameter (ft): 3.51
 Exit Gas Velocity (ft/s): 49.38 Exit Gas Flow Rate (acfm): 46094.0
 Exit Gas Temp (F): 144.0

- Release Latitude and Longitude

 Latitude: 41.61277 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

- **Release Point Information**

 Release Point ID: VER009
 Release Type: Vertical
 AQD Description: RA23A&B
 Company Release Point ID: RA 23A&B
 Company Release Point Description: RA23A&B
 Operating Status: Operating
 Base Elevation (ft): 6222.44

- **Stack Details**

 Stack Height (ft): 79.99
 Stack Diameter (ft): 2.99
 Exit Gas Velocity (ft/s): 90.78
 Exit Gas Flow Rate (acfm): 67215.0
 Exit Gas Temp (F): 119.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release point Information

- Release Point ID: VER064
- Release Type: Vertical
- AQD Description: RA23A&B R-13 Sesqui Gas Fired Calciner
- Company Release Point ID: RA 23A&B
- Company Release Point Description: R-13 Sesqui Gas Fired Calciner
- Operating Status: Operating
- Base Elevation (ft): 6222.44

Stack Details

- Stack Height (ft): 79.99
- Stack Diameter (ft): 2.99
- Exit Gas Velocity (ft/s): 90.78
- Exit Gas Flow Rate (acfm): 67215.0
- Exit Gas Temp (F): 119.0

Release Latitude and Longitude

- Latitude: 41.61277
- Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point Information

Release Point ID: VER008
Release Type: Vertical
AQD Description: RA23A&B R-13 Sesqui Gas Fired Calciner
Company Release Point ID: RA 23A&B
Company Release Point Description: R-13 Sesqui Gas Fired Calciner
Operating Status: Operating
Base Elevation (ft): 6222.44

Stack Details

Stack Height (ft): 79.99
Exit Gas Velocity (ft/s): 90.78
Exit Gas Temp (F): 119.0
Stack Diameter (ft): 2.99
Exit Gas Flow Rate (acfm): 67215.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Facility Detail Report (F000349): Westvaco Facility
Release Point : VER007

Release Point Information

Release Point ID: VER007
Release Type: Vertical
AQD Description: RA-1 Baby Sesqui Calciner
Company Release Point ID: RA-1
Company Release Point Description: RA-1 Baby Sesqui Calciner
Operating Status: Operating
Base Elevation (ft): 6230.31

Stack Details

Stack Height (ft): 56.5
Stack Diameter (ft): 1.5
Exit Gas Velocity (ft/s): 76.34
Exit Gas Flow Rate (acfm): 8200.0
Exit Gas Temp (F): 172.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point : VER010

- **Release Point Information**

 Release Point ID: VER010
 Release Type: Vertical
 AQD Description: RA-24 Sesqui Gas-Fired Calciner R-15
 Company Release Point ID: RA-24
 Company Release Point Description: RA-24 Sesqui Gas-Fired Calciner R-15
 Operating Status: Operating
 Base Elevation (ft): 6219.49

- **Stack Details**

 Stack Height (ft): 80.0
 Stack Diameter (ft): 4.5
 Exit Gas Velocity (ft/s): 68.12
 Exit Gas Flow Rate (acfm): 65000.0
 Exit Gas Temp (F): 147.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
Release Point Information

Release Point ID: VER011
Release Type: Vertical
AQD Description: R-5 Sesqui Fluid Bed Calciner (RA-25)
Company Release Point ID: RA-25
Company Release Point Description: R-5 Sesqui Fluid Bed Calciner (RA-25)
Operating Status: Operating
Base Elevation (ft): 6224.41

Stack Details

Stack Height (ft): 50.0
Stack Diameter (ft): 4.99
Exit Gas Velocity (ft/s): 70.44
Exit Gas Flow Rate (acfm): 83000.0
Exit Gas Temp (F): 170.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point : VER012

- **Release Point Information**

 Release Point ID: VER012
 Release Type: Vertical
 AQD Description: RA-26 R-6 Sesqui Fluid Bed Calciner
 Company Release Point ID: RA-26
 Company Release Point Description: RA-26 R-6 Sesqui Fluid Bed Calciner
 Operating Status: Operating
 Base Elevation (ft): 6222.11

- **Stack Details**

 Stack Height (ft): 95.0
 Stack Diameter (ft): 5.0
 Exit Gas Velocity (ft/s): 90.82
 Exit Gas Flow Rate (acfm): 107000.0
 Exit Gas Temp (F): 150.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
Release Point ID: VER013
Release Type: Vertical
AQD Description: RA-28 Sesqui Bagging
Company Release Point ID: RA-28
Company Release Point Description: RA-28 Sesqui Bagging
Operating Status: Operating
Base Elevation (ft): 6224.74

Stack Details
Stack Height (ft): 60.01
Stack Diameter (ft): 2.0
Exit Gas Velocity (ft/s): 39.8
Exit Gas Flow Rate (aftm): 1.0
Exit Gas Temp (F): 77.0

Release Latitude and Longitude
Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point : VER014

- **Release Point Information**

 Release Point ID: VER014
 Release Type: Vertical
 AQD Description: RA-29 R-2 Sesqui Fluid Bed Calciner (RA-29)
 Company Release Point ID: RA-29
 Company Release Point Description: RA-29 R-2 Sesqui Fluid Bed Calciner (RA-29)
 Operating Status: Operating
 Base Elevation (ft): 6221.46

- **Stack Details**

 Stack Height (ft): 80.0
 Stack Diameter (ft): 6.0
 Exit Gas Velocity (ft/s): 53.05
 Exit Gas Flow Rate (acfm): 90000.0
 Exit Gas Temp (F): 180.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
Release Point : VER015

- Release Point Information
 - Release Point ID: VER015
 - Release Type: Vertical
 - AQD Description: RA-33 Sesqui Silo Storage Vent
 - Company Release Point ID: RA-33
 - Company Release Point Description: RA-33 Sesqui Silo Storage Vent
 - Operating Status: Operating
 - Base Elevation (ft): 6215.22

- Stack Details
 - Stack Height (ft): 58.99
 - Stack Diameter (ft): 4.0
 - Exit Gas Velocity (ft/s): 53.05
 - Exit Gas Flow Rate (acfm): 40905.0
 - Exit Gas Temp (F): 74.0

- Release Latitude and Longitude
 - Latitude: 41.61277
 - Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
Release Point : AVL001

- Release Point Information

 Release Point ID: AVL001
 Release Type: Fugitive (Area, Volume, Line)
 AQD Description: RAIL Rail Traffic Switching
 Company Release Point ID: rail
 Company Release Point Description: Rail Traffic Switching
 Operating Status: Operating
 Release Height (ft): 1.0

- Release Latitude and Longitude

 Latitude: 41.61277
 Longitude: -109.81715

- CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Page 204 Facility Detail Report (F000349): Westvaco Facility
Release Point Information

- Release Point ID: VER047
- Release Type: Vertical
- AOD Description: RD-3 Lime Slaker Vent
- Company Release Point ID: RD-3
- Company Release Point Description: RD-3 Lime Slaker Vent
- Operating Status: Operating
- Base Elevation (ft): 6326.12

Stack Details

- Stack Height (ft): 110.01
- Stack Diameter (ft): 1.84
- Exit Gas Velocity (ft/s): 33.01
- Exit Gas Flow Rate (acfm): 5228.0
- Exit Gas Temp (F): 70.0

Release Latitude and Longitude

- Latitude: 41.61277
- Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>OTRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Release Point Information

Release Point ID: AVL008
Release Type: Fugitive (Area, Volume, Line)
AQD Description: Sesqui Plant Railcar Load Out
Company Release Point ID: SESQUILOAD
Company Release Point Description: Sesqui Plant Railcar Load Out
Operating Status: Operating
Release Height (ft): 10.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>
- **Release Point Information**

 Release Point ID: AVL007
 Release Type: Fugitive (Area, Volume, Line)
 AQD Description: SESQLOUT
 Company Release Point ID: SESQUIPILE
 Company Release Point Description: Sesqui Plant Ore Stockpile handling activities
 Operating Status: Operating
 Release Height (ft): 1.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility
Release Point Information

Release Point ID: AVL009
Release Type: Fugitive (Area, Volume, Line)
AQD Description: SESQWE
 Sesqui pile wind erosion
Company Release Point ID: SESQWE
Company Release Point Description: Sesqui ore stockpile wind erosion
Operating Status: Operating
Release Height (ft): 38.0

Release Latitude and Longitude

Latitude: 41.61277
Longitude: -109.81715

CEM Data

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>O</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

- **Release Point Information**

 Release Point ID: VER035
 Release Type: Vertical
 AQD Description: SM-1 Gas Fired Lime Kiln
 Company Release Point ID: SM-1
 Company Release Point Description: SM-1 Gas Fired Lime Kiln
 Operating Status: Operating
 Base Elevation (ft): 6326.12

- **Stack Details**

 Stack Height (ft): 60.01
 Stack Diameter (ft): 6.0
 Exit Gas Velocity (ft/s): 39.24
 Exit Gas Flow Rate (acfm): 66575.0
 Exit Gas Temp (F): 162.0

- **Release Latitude and Longitude**

 Latitude: 41.61277
 Longitude: -109.81715

- **CEM Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>H2S</th>
<th>SO2</th>
<th>NOX</th>
<th>CO</th>
<th>THC</th>
<th>HCL</th>
<th>HFL</th>
<th>OT</th>
<th>TRS</th>
<th>CO2</th>
<th>FLOW</th>
<th>OPACITY</th>
<th>PM</th>
</tr>
</thead>
</table>

Facility Detail Report (F000349): Westvaco Facility